Университет | Образование | Наука | Внеучебная жизнь |
Меню Close Menu |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
Rus / Eng
|
Университет | Образование | Наука | Внеучебная жизнь |
Университет |
Образование |
Наука |
Внеучебная жизнь |
English version
Archive of Issues |
Aleksei P. Rakhmanov1, Head of Strength Analysis Department, e-mail: Rakhmanov1972@yandex.ru
Igor A. Razumovsky2, Doctor of Technical Sciences (habil.), Professor, Chief Researcher of Fracture and Survivability Mechanics Laboratory, e-mail: murza45@gmail.com
1NIKIET named after N.A. Dellezhal JSCo
2Blagonravov Mechanical Engineering Research Institute of the RAS
The article describes the calculated assessment of stress concentration in threaded connections, the need to make adjustments to the relevant regulatory documents has been established. The results of the development of the program complex (PC), based on numerical modelling of stress strain state and strength of the threaded joints of high-loaded elements of constructions under static and cyclic loadings, including a series of programs (in ANSYS environment) that enables calculation of elastoplastic contact interaction of VAT threaded connections “stud-nut and stud-flange” under pressure and temperature influences. Examples of calculation of typical «stud-nut» connections under static and cyclic power and heat loads are given.
Keywords: threaded connections, normative documents, force and heat loading elastic-plastic deformations, cyclic strength
References
1. Factors of evaluation of stress states, straingth and resource of main threaded connections [Faktory otsenki napriazhennykh sostoanii, prochnosti i resursa otvetstvennykh rezbovykh soedinenii] / N.А. Makhutov, Iu.K. Petrenia, М.М. Gadenin, S.V. Ivanov // Industrial Laboratory. Diagnostics of Materials [Zavodskaia laboratoria. Diagnostika materialov]. 2014. Vol. 80. No 7. P. 44–54.
2. Мakhutov N.А. Diagnostic problems of threaded connections adjusted for mechanical properties of materials Problemy diagnostiki rezbovykh soedinenii s uchetom mekhanicheskikh svoistv materialov] // Industrial Laboratory. Diagnostics of Materials [Zavodskaia laboratoria. Diagnostika materialov]. 2014. Vol. 80. No 7. P. 40–44.
3. Маkhutov N.А., Zatsarinnyi V.V. Effect of elastic-plastic deformation and creep in threaded connections [Effekty uprugoplasticheskogo deformirovania i polzuchesti v rezbovykh soedineniiakh]// Industrial Laboratory. Diagnostics of Materials [Zavodskaia laboratoria. Diagnostika materialov]. 2015. Vol. 81. No. 9. P. 54–59.
4. Маkhutov N.А., Zatsarinnyi V.V. Calculated-experimental evaluation of threated connections strength and sourse adjusted for mechanical properties of materials [Raschetno-eksperimentalnaya otsenka prochnosti i resursa rezbovykh soedinenii s uchetom mekhanicheskikh svoistv materialov] // Meсhanical Engineering and Machine Reliability Problems [Problemy mashinostroenia i nadezhnosti mashin]. 2015. No 1. P. 30–39.
5. Маkhutov N.А., Gadenin М.М. Complex evaluation of strength, resource, durability and safety of machines in complicated conditions [Kompleksnaya otsenka prochnosti, resursa, zhivuchesti i bezopasnosti mashin v slozhnykh usloviiakh] // Meсhanical Engineering and Machine Reliability Problems [Problemy mashinostroenia i nadezhnosti mashin]. 2020. No 4. P. 20–24.
6. Кozhevnikov V.F. Contact interaction of a bolt with hole walls in a double-shear joint [Kontaktnoe vzaimodeistvie bolta so stenkami otverstii v dvukhsreznom soedinenii] // Meсhanical Engineering and Machine Reliability Problems [Problemy mashinostroenia i nadezhnosti mashin]. 2012. No 3. P. 55–60.
7. Razumovsky I.A. Experimental methods of studying the stress-strain state: history, problems, prospects for development [Eksperimentalnye metody issledovania napriazhenno-deformirovannogo sostoiznia: istoria, problemy, perspektivy razvitia] // Mechanical Engineering and Engineering Education [Mashinostroenie i inzhenernoe sostoianie]. 2018. No 2. P. 17–30.
8. Residual stress estimation in a surface layer of thread roots [Opredelenie ostatochnych napriazhenii v poverkhnostnom sloe vpadin rezby] / А.N. Ovseenko, D.N. Klauch, D.P. Nosov, А.А. Ponomarev, I.V. Kotov, V.M. Terekhov // Industrial Laboratory. Diagnostics of Materials [Zavodskaia laboratoria. Diagnostika materialov]. 2017. Vol. 83. No 4. P. 55–59.
9. Norms for Strength Analysis for Equipment and Pipelines of Nuclear Power Generating Facility (PNAE G-7-002-86) [Normy rascheta na prochnost oborudovania i truboprovodov atomnykh energeticheskikh ustanovok]. Gosatomenergonadzor SSSR. М.: Energoatomizdat, 1989. – 525 p.
10. Birger I.А., Iosilevich G.B. Threaded connections [Rezbovye soedinenia]. М.: Mashinostroenie, 1973. – 256 p.
11. Iakushev А.I., Mustaev R.Kh., Mavliutov R.R. Increasing Strength and Reliability of Threaded Flange Connections {Povyshenie prochnosti i nadezhnosti rezbovykh flantsevykh soedinenii]. М.: Mashinostroenie, 1979. – 215 p.
12. Iosilevich G.B., Mavliutov R.R., Rokitianskaia I.V. Studying the stress state and concentration in threaded connections [Issledovanie napriazhennogo sostoiania i kontsentracii napriazhenii v rezbovykh soedineniiakh] // Bulletin of Mechanical Engineering [Vestnik Mashinostroeniia]. 1974. No 11. P. 21–23.
13. Kagaev V.P., Drozdov Iu.N. Strength and Wear Resistance of Machine Parts [Prochnost i iznosostoikost detalei mashin]. М.: Wysshaia Shkola. 1991. – 319 p.
14. Birger I.А., Shorr B.F., Iosilevich G.B. Strength Analysis for Mashine Parts. М.: Mashinostroenie, 1979. – 702 p.
15. Maruyama K. Stress analysis of a bolt-nutjoint by the finite element method and the cooper-electroplanting method // Bull. of ISME. 1973.
16. No 94. P. 671–678.16. Birger I.А., Iosilevich G.B. Threaded and Flange Connections [Rezbovye i Flantsevye soedineniia]. М.: Mashinostroenie, 1990. – 365 p.
17. RD-EO 0330-01. Instruction for Strength Analysis for Equipment and Pipelines of Reactor Plants RBMK, VVER and EGP during operation [Rukovodstvo po raschetu na prochnost oborudovaniia i truboprovodov reaktornykh ustanovok RBMK, VVER i EGP na stadii ekspluatatsii]. Moscow, 2004. – 157 p.
Valeria V. Dikareva1, 3-year student of Additive technology educational programme, Material Pressure Processing and Additive technology Dpt., e-mail: vaaleri@bk.ru
Pavel A. Petrov1, Ph.D. in Technical Sciences, Associate Professor, Head of Material Pressure Processing and Additive technology Dpt., e-mail: petrov_p@mail.ru
Mikhail S. Svirin1, 3-year student of Additive technology educational programme, Material Pressure Processing and Additive technology Dpt., e-mail: misvirin@yandex.ru
Elena D. Zhikhareva1, Senior Lecturer at Project Center, e-mail: lenyuch@mail.ru
Ruslan A. Molchanov2, director, «Filamentarno!» Company, e-mail: info@filamentarno.ru
1Moscow Polytechnic University
2«Filamentarno!»
This article provides the research on additive manufacturing economics in case of the FFF technology application for printing lost wax models made of wax-like filament plastic. It is observed the use of the 3D-printed wax models for a production cycle of the “Crankcase cover” part with lost wax technology (LWT). This technology was compared with the traditional ones making wax models in molds, on a milling machine, on a professional 3D-printers from wax, photopolymer light-cure materials or appropriate similar materials. The obtained regression model allows to predict a cost of the «Crankcase cover» production with LWT. According to the mentioned model, it is established that the threshold for the profitability of FFF technology application at «Crankcase cover» production is 199 pcs. Some recommendations are given for the choice of the wax models production technology for lost wax casting.
Keywords: wax model, lost wax casting, FFF addive technology, 3D-printing, wax-like filament for 3D-printing, profitability
References
1. 3dsourced.com: The Complete Guide to Lost Wax Casting and Wax 3D Printing [web]. URL: https://3dsourced.com/3d-printing-technologies/lost-wax-casting-3d-printing/ (date of acc.: 30.06.2020)
2. Sarojrani Pattnaik, D. Benny Karunakar, P.K.Jha. Developments in investment casting process – a review // Journal of Materials Processing Technology. 2012. Vol. 212. Issue 11 (November). P. 2332–2348.
3. Information and reference portal for metallurgy and foundry: Lost wax casting: URL: http://metalurgu.ru/lite-v-razovyie-formyi/lite-po-vyiplavlyaemyim-modelyam.html (date of acc.: 30.06.2020)
4. 3dinsider.com 3D Printing with Wax: The Process of Lost Wax Casting: URL: https://3dinsider.com/wax-3d-printing/ (date of acc.: 30.06.2020)
5. Top3dshop.ru: Wax 3D-printing. URL: https://top3dshop.ru/blog/wax-3d-printing.html (date of acc.: 30.06.2020)
6. 3dsourced.com: The Complete Guide to Lost Wax Casting and Wax 3D Printing. URL: https://3dsourced.com/3d-printing-technologies/lost-wax-casting-3d-printing/ (date of acc.: 30.06.2020)
7. proto3000.com: Benefits of Using 3D Printing Technology for Investment Casting. URL: https://proto3000.com/applications/investment-casting/ (date of acc.: 30.06.2020)
8. envisiontec.com: From Plastics to Wax: Premium Castable Resins. URL: https://envisiontec.com/3d-printing-materials/castable/ (date of acc.: 30.06.2020)
9. 3dtoday.ru: Customisation of casting! Meet very soon Wax3D made of Filamentarno! company. URL: http://3dtoday.ru/blogs/filamentarno/give-available-casting-to-the-masses-soon-meet-wax3d-from-the-company-/ (date of acc.: 30.06.2020)
10. 3dpulse.ru: At Siberian State University found the way to wax 3D-printing. URL: https://www.3dpulse.ru/news/nauchnye-razrabotki-tehnologii/v-sibgu-nashli-sposob-pechatat-voskom/ (date of acc.: 30.06.2020)
11. Filaments.ca: Print2Cast WAX Filament - 1.75 mm. URL: https://filaments.ca/products/print2cast-wax-filament-1-75mm (date of acc.: 30.06.2020)
12. 3dtoday.ru: Wax3D. From drawing to metall. URL: https://3dtoday.ru/blogs/filamentarno/wax3d-printing-wax-models-for-casting-in-fdm-3d-printer/ (date of acc.: 30.06.2020)
13. Affordable 3D-printing of wax models for casting // Additive technologies. 2019. № 4. P. 30–33. URL: https://additiv-tech.ru/publications/dostupnaya-pechat-voskovyh-form-dlya-litya.html (date of acc.: 30.06.2020)
14. All3DP. How to 3D Print With Wax. URL: https://all3dp.com/2/wax-3d-printing-how-to-3d-print-wax/ (date of acc.: 30.06.2020)
15. 3DiY: Plastics for 3D-printing: everything you should know about the materials. URL: https://3d-diy.ru/wiki/3d-printery/raznovidnosti-plastikov-3D-pechati/#Moldlay (date of acc.: 30.06.2020)
16. Experimental Study on Mold-Lay Filament instead of Wax in Investment Casting Process/ Imam Kusyairi, Helmy Mukti Himawan, Moch Agus Choiron, Yudy Surya Irawan, Rachmat Safari, Dagus Resmana Djuanda// Journal of Energy, Mechanical, Material, and Manufacturing Engineering. 2020. Vol. 5. No. 1 (May).
17. Alibaba.com: Wax-3d-printer filament for mold making filament. URL: https://russian.alibaba.com/product-detail/wax-3d-printer-filament-for-mold-making-filament-60041196021.html?spm=a2700.icbuShop.41413.9.1baace4002NqMj (date of acc.: 30.06.2020)
18. Indiamart.com: Think3D Wax Filament. URL: https://www.indiamart.com/proddetail/wax-filament-17290071055.html (date of acc.: 30.06.2020)
19. i-beamfilament.com: I-BEAM BLUE WAX PLA – Casting Filament for 3D Printers 1.75 mm/ 1 kg Spool. URL: https://i-beamfilament.com/product/i-beam-blue-wax-pla-casting-3d-printer-filament-1-75mm-1kg-spool/ (date of acc.: 30.06.2020)
Mikhail V. Vartanov1, Doctor of Technical Sciences (habil.), Professor of Mechanical Engineering Technologies and Equipment Dpt, е-mail: m.v.vartanov@mospolytech.ru
Aleksei S. Vlasovч1, Master programme student of Mechanical Engineering Technologies and Equipment Dpt., е-mail: barclaus2@yahoo.com
1Moscow Polytechnic University
The prospects of using industrial robots to perform mechanical finishing of parts in mechanical engineering are considered. There are given schemes for constructing operations using robots and the composition of the cell for performing robotic finishing. Experimental studies are described, after which optimal cutting conditions are found that provide the required quality after surface treatment.
Keywords: robotic systems, finishing machining, experimental research, surface condition
References
1. Pilinevich L.P. Porous diamond tools with anisotropic pore structure for grinding and polishing [Poristyi Almaznyi Instrument s Anizotropnoi Porovoi Strukturoi dla Shlifovalno-polirovalnykh Rabot] // Report of BSUIR [Doklad BGUIR]. 2016. No 3 (97). P. 44–48.
2. Pandremenos J., Stavropoulos P., Chryssolouris G. Machining with robots: a critical review // 7th International Conference on Digital Enterprise Technology. Athens, Greece, 2011. P. 221‒230.
3. Milutinovic D., Glavonjic M., Slavkovic N. Reconfigurable robotic machining system controlled and programmed in a machine tool manner // International Journal Adv Manuf Technology. 2011. P. 1217–1229.
4. Vartanov M.V., Zinina I.N., Zotin D.O. Technological capabilities of robotic finishing parts in a multiproduct manufacture [Tekhnologicheskie vozmozhnosti robotizirovannoi otdelochnoi obrabotki detalei v usloviiakh mnogonomenklaturnogo proizvvodstva] // Bulletin of the Russian State Technical University [Vestnik RGATU]. 2017. No 1 (40). P. 190–193.
5. Robotic High-Speed Machining of Aluminum Alloys / I. Zaghbani, M. Lamraou, V. Songmene, M. Thomas el M. Badaoui // Proceedings of the 4th edition of the International Conference on High Speed Machining (ICHSM’2010). Harbin, China, 2011. P. 584‒589.
6. Increasing the Milling Accuracy for Industrial Robots Using a Piezo-Actuated HighDynamic Micro Manipulator / O. Sörnmo, B. Olofsson, U. Schneider, A. Robertsson, R. Johansson // 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2012. P. 104‒110.
7. Seong Hyeon K., Eunseok N., Soon-Hong H. Robotic Machining: A Review of Recent Progress // International Journal of Precision Engineering and Manufacturing, 2019. P. 1629‒1642.
8. Krantz M., Andersson R. Robotized Polishing and Deburring with Force Feedback Control: Master Thesis, Master Degree program in Robotics, University West, Department of Engineering Science, S-461 86 Trollhättan, SWEDEN, 2010.
9. Misiurov M.N. Power control of robots and its use for deburring industrial parts [Silovoe upravlenie robotami i ego primenenie dla udalenia zausentsev promyshlennych detalei] // Young Scientist [Molodoi Uchonyi]. 2016. No 3 (107). P. 155–158.
10. Belova N.V., Malinina O.V. The use of a full factorial experiment at gas flow parameters measuring [Ispolzovanie polnogo faktornogo eksperimenta pri izmerenii parametrov gazovogo potoka] // Young scientist [Molodoi Uchonyi]. 2010. No 4 (15). P. 65–70.
11. Kristal M.G., Gorelova A.Iu. Processing the Results of Extremal Experiment Planning [Obrabotka Resultatov Planirovania Ekstremalnogo Eksperimenta]: student guide [ucheb. posobie]. Volgograd: VolGTU, 2019. ‒70 p.
Valery S. Tereshchuk, Ph.D. in Technical Sciences, Senior Researcher, member of the Russian Academy of Cosmonautics named after K.E. Tsiolkovsky, е-mail: velta-nv@mail.ru
1Blagonravov Mechanical Engineering Research Institute of the RAS
In the paper the possibility of modeling a complex biological system using the classical principles of Mechanics and Gas Dynamics is considered. Based on the description of the processes in the system, a mathematical model was developed for lungs. The model allows you to calculate and to predict changes in the rate of exhaled air flow, pressure in the lungs, glottis resistance when exhaling, muscle compression strength and air stream velocity when exhaling, and can be used in medical practice to diagnose the condition of patients.
Keywords: exhaled air flow rate, lungs elasticity, glottis
References
1. Tereshchuk V.S. Mathematical model of the lung in the appendix to the spirogram (abstract) [Matematicheskaya model legkogo v prilozhenii k spirograme (referat) // USSR Academy of Sciences. Biophysics [Akademya nauk SSSR. Biofizika]. Vol. XXX11. No 3. Moscow, 1987.
2. Tereshchuk V.S. Mathematical model of the lung in the appendix to the spirogram (abstract) [Matematicheskaya model legkogo w prilozhenii k spirograme (referat) // Proc. of the International conference titled “Machines, technology and materials for modern engineering” dedicated to the 80th anniversary of Blagonravov Mechanical Engineering Research Institute of the Russian Academy of Sciences [Sbornik tezisov Mezhdunarodnoy konferentsii “Mashiny, tekhnologii i materialy dla mashinostroenia”]. November 21–22, 2018, Moscow. P. 190.
3. Dyachenko A.I. Mathematical models of lung mechanics with distributed parameters: autoref. dis ... of a Doctor of Technical Sciences [Matematicheskaya model mekhaniki legkogo s raspredelennymi parametrami: aftoreferat diss. kandidata tekhnicheskikh nauk], Moscow, 2003. – 280 p.
4. Sokolov E.I., Fedosenko N.B., Yatsenko A.A. Mathematical and computational modeling of human lungs [Matematicheskoe i kompiuternoe modelirovanie chelovecheskikh legkikh cheloveka]// Scientific and Technical Bulletin of SPbGPU. Physic-mathematic Sciences [Nauchno-tekhnicheskie vedomosti SPbGPU. Phiz-mat. nauki]. 2012. No. 4. P. 32–39.
5. Trusov P.V., Zaitseva N.V., Tsinker M.Yu. Modeling of the human breathing process: conceptual and mathematical statements [Modelirovanie protsessa dykhania cheloveka: kontseptualnaia i matematicheskaia postanovki] //Mathematical biology and bioinformatics [Matematicheskaia biologia i bioinformatika]. 2016. Vol. 11. No 1. P. 64–80.
6. Ivakhno N.V., Kanunnikova A.S., Fedorov S.S. Mathematical modeling of processes in the human respiratory system [Matematicheskoe modelirovanie protsessov v dykhatelnoy sisteme cheloveka] // Bulletin of New Medical Technologies [Vestnik novykh meditsynskikh tekhnologii]. 2015. No 2. P. 1–3.
7. Kamolova A.F., Shamratova A.R., Insarova G.E. Physiology of the Respiratory System [Fiziologia Respiratornoy Sistemy]. Ufa: Fno. 2TBOU IN BSMU of the Ministry of health of Russia, 2016. – 60 p.
8. Jordanoglou J., Koursouba E. and ather «Effective time of the forced expiratory Spirogram in health and airways obstrustion». Thorax, 1979, 34, 187–193.
9. Navratil M., Kadlec K., Daum S. Pathophysiology of breathing [Patofiziologiia dykhania]. M.: Meditsina, 1967. – 372 p.
10. Gmurman V.E. Probability theory and mathematical statistics [Teoria veroiatnosti i matematicheskaya statistika]: 9th ed. M.: Vysshaya shkola, 2003. – 479 p.
11. Veibel E.R. Human lung morphometry. M.: Meditsina, 1970. – 176 p.
Valerii V. Kirillov, Doctor of Technical Sciences (habil.), Associate Professor, Professor of Aircraft Engines Department, e-mail: kirillovvv@susu.ru
1South Ural State University
In the paper the mathmodel of transition processes in a closed loop of the power unit with natural circulation of two fase heat transfer medium, including one-dimensional equations of continuity, impulse, flow energy, equation of steam fase continuity. An effective numerical method for mathmodel realization on the base of an implicite difference scheme and Newton method. System of difference equations was solved with a two point matrix cycle sweep. There were described some versions of a cyclic sweep for a loop of a constant and variable cross sections. Transition processes have been analysed at heat load intermittent variation in a steam generating station.
Keywords: closed loop, heat transfer, transition processes, implicite difference scheme, cyclic sweep
References
1.Dynamic modes of the marine nuclear power plants operation [Dinamicheskie rezhimy raboty sudovykh iadernykh energeticheskikh ustanovok] / А.А. Sarkisov, А.А. Krainov, B.М. Likhterov, V.V. Obolianinov, V.N. Puchkov. L.: Sudostroenie, 1971. – 269 p.
2. Мitenkov F.М., Мotorov B.I. Nonstationary modes of the marine nuclear power plants operation [Nestatsionarnye rezhimy raboty sudovykh iadernykh energeticheskikh ustanovok]. L.: Sudostroenie, 1970. – 194 p.
3. Arifmetchikov Е.F. Nonstationary processes in a nuclear reactor with circulating compressible medium as a result of loop decompaction and its particular elements dynamics [Nestatsionarnye process v iadernom reaktore s tsirkuliruiuschei szhimaemoi sredoi, vyzvannye razuplotneniem kontura i dinamikoi ego otdelnykh elementov]. М., 1967. – 20 p. (Preprint of Nuclear Energy Institute: IАE-1425).
4. Arifmetchikov Е.F. Analysis of nonstationary processes in a nuclear plant with gas cooling. [O raschete nestatsionarnykh processov v iadernykh ustanovkakh c gazovym okhlazhdeniem]. М., 1968. – 20 p. (Preprint of Nuclear Energy Institute: IАE-1758).
5. Arifmetchikov Е.F. The effective method for nonstationary processes analysis in a multiloop nuclear plant with gas coolant [Ob odnom effektivnom metode rascheta nestatsionarnykh processov v mnogopetlovoi iadernoi ustanovke s gazovym teplonositelem]. М., 1970. – 24 p. (Preprint of Nuclear Energy Institute: IАE-2050).
6. Arifmetchikov Е.F. Effective method for numerical analysis of nonstationary processes on plants with a complex communication system [Effectivnaia metodika chislennogo rascheta nestatsionarnykh protsessov v ustanovkakh so slozhnoi sistemoi kommunikatsii] // Physics of Nuclear Reactors [Fizika iadernykh reaktorov]. М.: Atomizdat, 1970. P. 62–81.
7. Studying dynamics of coolant natural circulation in a closed loop [Issledovanie dinamiki estestvennoi tsirkulatsii teplonositelia v zamknutom konture] / R.М. Kalinin, L.B. Gusev, М.М. Nazarchuk, М.М. KKovetskaia // Termophysics and Heat Engineering. 1980. No 37. P. 54–60.
8. Mayer J.E., Rose R.R. Using an integral model of amount of movement for studying flow fluctuations in parallel channels at boiling [Primenenie integralnoi modeli kolichestva dvizhenia dla izuchenia kolebanii potoka v parallelnykh kanalakh pri kipenii] // Proc. of the American Society of Mechanical Engineers. Series С: Heat Transfer. 1963. Vol. 85. No 1. P. 3–14.
9. Pliutinski V.I., Leppik P.А. Mathematical model of circulation dynamics in a big shell-type boiling reactor [Matematticheskaia model dinamiki tsirkulitsii v bolshom korpusnom kipiaschem reaktore] // Proc. of Moscow Energy Institute. 1960. No 503. P. 109–117.
10. Barklay F.W., Nisman R.E. Transient Heat Transfer and Fluid Mechanics of a Recierculating Pressurized Water Loop during Blowdown and Cold Water Injection // J.Chem.Eng. Vol. 59. Nо 4. 1981. P. 28–36.
11. Khramov S.N., Makarov S.S. Hydrodynamic processes in a loop with natural coolant circulation at starting the heat exchange apparatus [Gidrodinamicheskie protsessy v konture s estestvennoi tsirkuliatsiei teplonositelia pri zapuske teploobmennogo apparata] // Bulletin of Izhevsk State Technical University [Vestnik ISTU]. 2000. No 4. P. 12–17.
12. Bielinski H., Mikielewicz J. Natural Circulation in Single and Two Phase Thermosyphon Loop with Conventional Tubes and Minichannels // Heat Transfer-Mathematical Modelling, Numerical Methods and International Technology. Intech, 2011. P. 475–496.
13. Ehrhard P., Muller U. Dynamical Beharviour of Natural Convection in a Single-Pgase Loop // J. of Fluid Mechanics. Vol. 217. August 1990. P. 487–518.
14. Kirillov V.V. Solving dynamics problems in areas with moving frames [O reshenii zadach dinamiki v oblastiakh c peremeschaiuschimisia granitsami] // Proc. of XXXVIII Scientific Conference titled “Dynamics of termophysic processes” [Trudy XXXVIII NTK “Dinamika teplofizicheskikh protsessov”]. Cheliabinsk: ChPI, 1986. P. 116–127.
15. Kirillov V.V. Operation processes analysis in low temperature gasifier taking into account the coolant granule movement[Raschet rabochikh protsessov v nizkotemperaturnom gasogeneratore s uchetom dvizhenia granul okhladitelia] // Chemical Physics and Mesoscopy [Khimicheskaia fizika i mezoskopiia]. 2009. Vol. 11. No 2. P. 172–180.
НОВОСТИ
МЕДИА
КОНТАКТНАЯ ИНФОРМАЦИЯ
УНИВЕРСИТЕТ
Ученый совет
Кампус
РЕСУРСЫ
Центр подготовки водителей (автошкола)
Центр развития профессионального образования
Центр развития профессионального образования
ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ