Университет | Образование | Наука | Внеучебная жизнь |
Меню Close Menu |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
Rus / Eng
|
Университет | Образование | Наука | Внеучебная жизнь |
Университет |
Образование |
Наука |
Внеучебная жизнь |
English version
Archive of Issues |
Ilia G. Rukovitsyn1, Ph.D. in Technical Science, Associate Professor of Dynamics, Durability of Machines and Strength of Materials Department, е-mail: irukovitsyn@mail.ru
1Moscow Polytechnic University, Moscow
In the article there is described a method of workability evaluation of a gascompressor unit with a rotor on the active electromagnetic bearings. Required the detuning and gain factors for the critical frequency of the first flexural form of rotor oscillations, excited by final unbalance forces, are determined on results of the modal and harmonic analyzing the elastic shafting of a gascompressor unit with a flexible rotor according to API 617 standard. These factors are the base for dynamic characteristics evaluation of a flexible rotor with resilient-damper supports which are magnetic bearings. Carried out studying enables us to form new criteria for workability evaluation the gascompressor units with a rotor on the active magnetic bearings, taking into account the rotor operation modes and zero costs for rotor structural changes.
Keywords: rotors, magnetic bearings, forced oscillations, final unbalance forces, critical frequency, API 617 standard
References
1. Rukovitsyn I.G., Asadulin V.A. Osobennosti dinamiki rotora turbodetandera na elektromagnitnom podvese [Dynamics features of a turboexpander rotor on the electromagnetic suspension] // Mashinostroenie i inzhenernoe obrazovanie [Mechanical Engineering and Engineering Education]. 2018. No. 3. P. 8‒13.
2. Rukovitsyn I.G. Ustanovivshiesia kolebania uprugogo rotora na aktivnykh elektromagnitnykh podshipnikakh [Steady-state vibrations of an elastic rotor on active electromagnetic bearings] // Mashinostroenie i inzhenernoe obrazovanie [Mechanical Engineering and Engineering Education]. 2019. No. 1. P. 14‒19.
3. Standart API 617 (sedmoe izdanie, iiul 2002). Osevye, tsentrobezhnye kompressory i detanderkompressory dla neftianoi, khimicheskoi i gazovoi promyshlennosti [API 617 Standard: 7th edition. July 2002. Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical and Gas Industry].
4. Deepak Srikrishnanivas. Rotor Dynamic Analysis of RM12 Jet Engine Rotor Using ANSYS: Master’s Degree Thesis. Department of Mechanical Engineering, Blekinge Institute of Technology, Karlskrona, Sweden, 2012. URL: https://ru.scribd.com/document/270818534/RotorDynamicAnalyis-of-m21-Enginer (date of appl.: 19.10.2019).
5. Rao J.S. History of Rotating Machinery Dynamics. New York: Springer, 2011. – 377 p.
6. Uriev E.V. Vibratsionnaia nadezhnost i diagnostika turbomashin. Chast 1. Vibratsia i balansirovka: uchebnoe posobie [Vibration Reliability and Diagnosis of Turbomachines. Part I. Vibration and Balancing]. Ekaterinburg: GOU VPO UGTU-UPI, 2005. ‒ 200 p.
7. Kostyuk A.G. Dinamika i prochnost turbomashin: 3-e izdanie [Dynamics and Strength of Turbomachines: 3d ed.] M.: MEI Publishing house, 2007. – 476 p.
8. Bathe K.J., Wilson E.L. Chislennye metody anaiza i metod konechnykh elementov [Numerical Analysis Methods and Finite Element Analysis.] M.: Stroyizdat, 1982. – 395 p.
9. Biderman V.L. Teoria mekhanicheskikh kolebanii [Theory of Mechanical Vibrations]. M.: Vysshaia shkola [Higher School], 1980. – 395 p.
10. Rukovitsyn I.G. K razrabotke matematicheskoi modeli rotora na magnitnoi podveske [Mathematical model development for a rotor on magnetic suspension] // Sbornik dokladov IV nauchno-prakticheskoi konferencii molodykh spetsialistov i studentov pamiati glavnogo konstruktora akademika V.I. Kuznetsova [Proc. of IV Scientific-practical Conference of Young Specialists and Students in Memory of the Chief Designer – Academician V.I. Kuznetsov]. Moskva, Moskovskii gosudarstvennyi tekhnicheskii universitet im. Baumana, 2007. P. 197‒205.
Mikhail V. Vartanov, professor, Doctor of Technical Science (habil.), Professor of Technology and Mechanical Engineering Equipment Department, е-mail: m.v.vartanov@mospolytech.ru
Sergei L. Petukhov, associate Professor, Ph.D. in Technical Science, Associate Professor of Technology and Mechanical Engineering Equipment Department, е-mail: p_sl@bk.ru
Trung Ta Tran, postgraguate student of Technology and Mechanical Engineering Equipment Department, e-mail: trungta82@gmail.com
1Moscow Polytechnic University, Moscow
The article deals with the assembly method that uses the rotational movement effect of the installed part (shaft) in combination with the effect of the vibration of the base part (bushing). The main stage of automated assembly is the process of mating parts. At this stage, there are problems related to the probability of jamming parts. The process of mating parts depends on a many factors effecting on the methods applied to operate the assembly. A parameter design experiment was carried out for studying the acting factors and testing the mathematical model for adequacy. Experimental equipment used for the experiment included the ABB IRB140 industrial robot equipped with a force-torque sensor. According to experimental results there were built dependences that show influence of variable parameters on assembly forces and momenta.
Keywords: robotic assembly, a force/torque sensor, the effect of rotation, vibrating device, an experimental installation
References
1. Kholodkova A.G. Osobennosti avtomaticheskogo vypolnenia tsylindricheskikh coedinenii s malym zazorom [Features of automatic execution of cylindrical joints with a small gap] // Sborka v mashinostroenii, priborostroenii [Assembly in Mechanical Engineering, Professional Equipment]. 2004. No. 4. P. 14‒18.
2. Kristal M.G. Proizvoditelnost i nadezhnost sborochnykh avtomatov: monografia [Performance and Reliability of Assembly Machines: a monograph]. Volgograd: VolSTU, 2011. ‒ 160 p.
3. Chernyakhovskaya L.B. Vliianie vraschatelnogo dvizheniia vala na protsess avtomaticheskoi sborki tsylindricheskikh detalei [Influence of the shaft rotational movement on the automatic assembly process of cylindrical parts]// Sborka v mashinostroenii, priborostroenii [Assembly in Mechanical Engineering, Professional Equipment]. 2016. No. 6. P. 7‒13.
4. Chernyakhovskaya L.B. Kinematicheskii I dinamiceskii analizy avtomaticheskoi sborki tsylindricheskikh detalei: monografia [Kinematic and Dynamic Analyzes of Automatic Assembly of Cylindrical Parts: monograph]. Samara: Samara State Technical University, 2011. ‒ 76 p.
5. Levchuk D.M. Issledovanie i razrabotka metodov otnositelnogo orientirovania sborochnykh edinits soedinenia vo vraschaiuschemsia potoke gazov pri avtomaticheskoi sborke: diss. … kand. tekh. nauk [Study and development of methods of relative orientation of assembly units of a connection in a rotating gas flow during automatic assembly]: dissertation of the candidate of technical sciences: 05.02.08. Moscow: MAMI, 1974. – 143 p.
6. Bakšys B, Baskutienė J., Chadarovičius A. Simulation of vibratory alignment of the parts to be assembled under passive compliance // Mechanika. 2013. Vol. 19 (1). P. 33‒39.
7. Baksys B., Baskutiene J. The directional motion of the compliant body under vibratory excitation // International Journal of Non-Linear Mechanics. 2012. Vol. 47. No. 3. P. 129–136.
8. Bozhkova L.V., Vartanov M.V., Kolchugin E.I. Voprosy vibratsyonnoi tekhnologii [Vibration technology issues] //
Mezhvuzovskii sbornik nauchnykh statei “Voprosy vibratsyonnoi tekhnologii” [Interuniversity proc. of papers titled “Issues of Vibration Technology”, Rostov-on-Don, 2006. P. 62‒67.9. Ivanov A.A. Vibratsionnye sborochnye sistemy [Vibration assembly systems] // Sborka v mashinostroenii, priborostroenii [Assembly in Mechanical Engineering, Professional Equipment]. 2013. No. 5. P. 7–10.
10. Kristal M.G., Chuvilin I.A. Issledovanie dinamiki vibratsyonnogo sopriazheniia s nizhnei oporoi tortsa okhvatyvaemoi detali [Dynamics studying of vibration mating the enclosed detail with a ground butt support // Sborka v mashinostroenii, priborostroenii [Assembly in Mechanical Engineering, Professional Equipment]. 2008. No. 4. P. 13–17.
11. Shuvaev V.G., Papshev V.A. Ustroistvo prostranstvennogo orientirovaniia detalei pri avtomaticheskoi sborke putem formirovaniia slozhnogo kolebatelnogo dvizheniia [ Spatial orientation unit of details at automation assembly via forming a complex oscillation motion] // Sborka v mashinostroenii, priborostroenii [Assembly in Mechanical Engineering, Professional Equipment]. 2009. No. 2. P. 23–25.
12. Khuri A.I., Mukhopadhyay S. Response surface methodology// Wiley Interdiscip. Rev. Comput. Stat. 2010. Vol. 2.
No. 2. P. 128–149.13. Response surface methodology (RSM) as a tool for optimization in analytical chemistry / M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira // Talanta. 2008. Vol. 76. No. 5. P. 965–977.
14. Tran T.T., Vartanov M.V., Arkhipov M.V. Application of the Part Rotation Effect for Reliability of the Robotic Assembly Process// 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 2019. P. 25-30, doi: 10.1109/ICSSE.2019.8823286.
15. Montgomery D.C. Planirovanie Eksperimenta i Analiz Dannykh [Design and Analysis Experiment. Leningrad: Sudostroenie, 1980. – 384 p.
16. Bozhkova L.V., Vartanov M.V., Kolchugin E.I. Eksperimentalnaia ustanovka dlia robotizirovannoi sborki [Experimental unit for robotic assembly] // Sborka v mashinostroenii, priborostroenii [Assembly in Mechanical Engineering, Professional Equipment]. 2009. No. 1. С. 5‒7.
Oleg E. Korolkov1, Postgraduate student of Materials Science Department, process engineer of Konmet, OJSC, е-mail: 41zh1k@mail.ru
Vladimir V. Stolyarov2, Doctor of Technical Science (habil.), Professor, Chief Researcher, е-mail: vlstol@mail.ru
Anatolii D. Shliapin1, Doctor of Technical Science (habil.), Professor, Head of Materials Science Department, е-mail: 6883412@mail.ru
1Moscow Polytechnic University, Moscow
2Blagonravov Mechanical Engineering Research Institute of the RAS, MoscowThe paper concentrates on influence of the electroplastic effect (EPE) on bending VT6 titanium alloy and unalloyed titanium Grade 4 samples. It has been shown that EPE can increase these alloys deformability by bending at reducing the maximum bending stress and increasing the strain-to-fracture at relatively low temperatures. The amplitude density increase prevents an appearance of cracks in VT6 alloy. The change of a longitudinal current direction to transverse results in additional decrease of bending stresses.
Keywords: bending, pulsed current, electroplastic effect, titanium, stress, deformation
References
1. Troitskiy О.А., Likhtman V.I. Ob anizotropii deistviia elektronnogo i γ-obluchenia na protsess deformatsii monokristallov tsynka v khrupkom sostoianii [Anizotropia of electronic and γ-irradiation effect on cynk monocristal deformation in brittle state] // Doklady AN SSSR [Proc. of the USSR Academy of Sciences]. 1963. Vol. 148. P. 332‒334.
2. Kravchenko V.Ia. Vozdeistvie napravlennogo potoka elektronov na dvozhushchiesia dislokatsii [Electrons directed flow influence on moving dislocations] // Zhurnal eksperimentalnoi i teoreticheskoi fiziki [Experimental and Theoretical Physics Jounal]. 1966. Vol. 51. P. 1676‒1681.
3. Bataronov I.L. Mekhanizmy elektroplastichnosti [Electro-plastiсity mechanisms] // Sorosovskii obrazovatelnyi zhurnal [Soros Educational Journal]. 1999. No 10. P. 93‒99.
4. Fizicheskie osnovy elektroimpulsnoi i elektroplasticheskoi obrabotok i novye materialy: monografia [Physic Principles of Electro-pulse and Electro-plastic Processing and New Materials: monography] / Iu.V. Baranov, О.А. Troitskiy, Iu.S. Avraamov, А.D. Shliapin. М.: Izdatelstvo MSIU, 2001. – 844 p.
5. Investigation of electroplastic effect at high deformation rates for 304SS and Ti– 6Al–4V / B. Kinsey, G. Cullen, A. Jordan, S. Mates // CIRP Ann. 2013. Vol. 62 (1). P. 279–282. https://doi.org/10.1016/j.cirp. 2013.03.058.
6. Effect of pulse current on bending behavior of Ti6Al4V alloy / Li. Xifeng, Zhou. Qiang, Zhao. Shuangjun, Chen Jun // Procedia Engineering. 2014. Vol. 81. P. 1799–1804. https://doi.org/10.1016/j.proeng.2014.10.235
7. Spitsyn V.I., Troitskiy О.А. Elektroplasticheskaia deformatsia metallov: monografia [Electro-plastic Metals Deformation: monography]. М.: Nauka, 1985. – 160 p.
8. Hot Tensile Behaviors and Microstructure Evolution of Ti-6Al-4V Titanium Alloy Under Electropulsing / Ao. Dong-Wei, Chu. Xing-Rong, Lin. Shu-Xia, Yang. Yang, Gao. Jun // Acta Metallurgica Sinica (English Letters). 2018. Vol. 31. P. 1287–1296 https://doi.org/10.1007/s40195-018-0735-3.
9. Effect of electropulsing on springback during V-bending of Ti-6Al-4V titanium alloy sheet / Ao. Dong-Wei, Chu. Xing-Rong, Lin. Shu-Xia, Yang. Yang, Gao. Jun // The International Journal of Advanced Manufacturing Technology. 2018. Vol. 96. P. 3197–3207. https://doi.org/10.1007/s00170-018-1654-1.
10. Use of hat-shaped specimens to study the effect of pulsed current on the shear deformation behavior of Ti–6Al–4V alloy / Zhao. Zhiyong, Hou. Hongliang, Wang1. Guofeng, Zhang. Yanling, Han1. Baoshuai, Li. Tiejun // Journal of Alloys and Compounds // Manuscript Number: JALCOM-D-17-09788.
11. Titanovye splavy. Metallovedenie titana i ego splavov [Titanium Alloys. Metal Science of Titanium and its Alloys] / S.P. Belov, М.Ia. Brun, S.G. Glazunov et al.: ed. by B.А. Kolachev, S.G. Glazunov. М.: Metallurgia, 1992. ‒ 352 p.
12. Conrad H. Electroplasticity in metals and ceramics // Materials Science and Engineering. 2000. A287. P. 276–287.
13. GOST 4648-2014 (ISO 178:2010). Plastmassy. Metod ispytania na staticheskii izgib. [Plastics. Method for the Slow-bend Test]. М.: Izdatelstvo standartov, 2014. – 33 p.
14. Titanium Alloys – Physical Properties // AZO Materials. 2002. April 2. URL: https://www.azom.com/article.aspx?ArticleID=1341 (дата обращения: 25.05.2020).
15. Glazunov S.G., Moiseev V.N. Titanovye splavy. Konstruktsyonnye titanovye splavy. [Titanium Alloys. Structural Titanium Alloys]. М.: Metallurgia, 1974. – 368 p.
16. Materialovedenie: uchebnik dla vysshikh tekhnicheskikhh uchebnykh zavedenii [Material Science: handbook for highest technical schools]: ed. by Prof. B.N. Arzamasov; 2nd ed., corr. and add. М.: Mashinostroenie, 1986. – 384 p.
17. Savenko V.S. Electroplastic effect at twinning metals // Problems of Physics, Mathematics and Technics. 2011. No 4 (9). P. 60–63.
Liudmila P. Andreeva1, Ph.D. in Technical Science, Associate Professor, Associate Professor of Welding Production Equipment and Techniques Department, е-mail: andree-va@mail.ru
Viktor V. Ovchinnikov1, Doctor of Technical Science (habil.), Professor, Professor of Materials Science Department, е-mail: vikov1956@mail.ru
Gulnara R. Latypova1, Ph.D. in Technical Science, Associate Professor of Welding Production Equipment and Techniques Department, е-mail: taksa2@yandex.ru
1Moscow Polytechnic University, Moscow
The article provides results of a study of the characteristics of cracks and residual strength development in welded compounds from aluminum alloys 1420 and 01570 at various technological versions of welding process. It is shown that the fracture toughness and residual strength characteristics of the welded compounds of the material 1420 obtained at a width of 750 mm are in the same range as for the width of 300 mm and are not significantly different from the characteristics of thin rolled sheets of the same alloy. Crack development on welded compounds, which were straighteninned with thermo fixation without removing a bead of the weld convexity, was multi-focal.
Keywords: aluminum alloys, welding compounds, fracture toughness, residual strength, speed of crack development
References
1. Sirotkin O.S., Matsnev V.N., Ryazantsev V.I. Konstruktivno-tekhnologicheskie problemy proizvodstva toplivnykh bakov dla mnogotselevoi aviatsionno-kosmicheskoi sistemy [Constructive and technological issues of fuel tanks production for the multi-purpose aerospace system] // Aviatsyonnaia promyshlennost [Aviation Industry]. 2001. No. 3. Р. 5‒11.
2. Matsnev V.N., Ryazantsev V.I., Danilov S.F. Issledovanie tekhnologicheskikh vozmozhnostei Al-Li splava 01421 dla shtamposvarnykh integralnykh konstruktsyi [Study of Al-Li 01421 alloy technological capabilities for stamped integrated structures] // Aviatsyonnaia promyshlennost [Aviation Industry]. 2004. No. 3. Р. 36‒42.
3. Zakharov V.V. Nekotorye problem ispolzovania Al-Li splavov [Certain problems of Al-Li alloys using] // Metallovedenie i termicheskaia obrabotka metallov [Metal Science and Metal Thermal Treatment]. 2003. No 2. Р. 8‒14.
4. Ovchinnikov V.V., Grushko O.E., Gureeva M.A., Friedlander I.N. Vliianie termicheskoi obrabotki na strukturnoe sostoianie svarnykh soedinenii splava 1420 [Effect of thermal processing on the structural condition of welded alloy compounds 1420] // Tekhnologia metallov [Metals technology]. 2006. No. 10. Р. 21‒23.
5. Vzaimosviaz soprotivlenia razrusheniu i strukturnykh prevraschenii pri svarke splava 1422 [Relationship of resistance to destruction and structural transformations in welding alloy 1422] / T.M. Labour, A.Y. Ishchenko, T.G. Taranova, G.M. Grigorenko, V.A. Kostin, A.A. Chaika // Svarochnoe proizvodstvo [Welding]. 2013. No. 5. P. 3–8.
6. Grushko O.E., Ovsyannikov V.V., Ovchinnikov V.V. Aluminievo-litievye splavy: metallurgiia, svarka, metallovedenie: monografia [Al-Li alloys: metallurgy, welding, metal science: monograph.]. M.: Nauka [Science], 2014. – 298 p.
7. Drits A.M., Ovchinnikov V.V. Svarka aluminievykh splavov: monografia [Welding aluminum alloys: monograph.]. M.: Ruda i Metally [Ore and Metals Publishing House], 2017. – 440 p.
8. Elagin V.I., Zakharov V.V., Rostova T.D. Vliianie soderzhania skandia na strukturu i svoistva aluminiia [Influence of the content of the scandia on the structure and properties of aluminum] // Tekhnologia liogkikh splavov [Light alloy technology]. 1984. No. 4. P. 5–11.
9. Filatov Y.A. Promyshlennye splavy na osnove sistemy Al-Mg-SC [Industrial alloys based on the Al–Mg–Sc system] // Tekhnologia liogkikh splavov [Light alloy technology]. 1996. No. 3. P. 30–35.
10. Issledovanie sovmestnogo vliiania skandiia i khroma na strukturu i mekhanicheskie svoistva aluminiia i ego splavov s magniem [Study of the joint effects of scandia and chromium on the structure and mechanical properties of aluminum and its alloys with magnesium] / L.L. Rochlin, T.V. Dobatkina, I.G. Korolkova, M.N. Bolotova // Metallovedenie i termicheskaia obrabotka metallov [Metal and thermal metal treatment]. 2008. No. 3. P. 24‒27.
11. Rudzei G.F. Vliianie defektov svarki i chisla remontnykh prokhodov na soprotivlenie ustalosti svarnykh soedinenii iz aluminievykh splavov [Effect of welding defects and the number of repair passages on resistance to fatigue of welded compounds from aluminum alloys] // Svarochnoe proizvodstvo [Welding]. 2013. No. 11. P. 32‒35.
12. Splav 1570C – material dla germetichnykh konstruktsii perspektivnykh mnogorazovykh izdelii RKK Energiia [Alloy 1570C is a material for airtight designs of rsc Energia’s promising reusable products] / A.V. Bronz, V.I. Efremov, A.D. Plotnikov, A.G. Chernyavsky // Spacecraft and technology. 2014. No. 4 (7). P. 62–67.
Olga E. Grushko, Ph.D. in Technical Science, Leading Researcher, е-mail: vogozor@mail.ru
Marina A. Gureeva1, Doctor of Technical Science (habil.), State prize laureate of the Russian Federation, Honoured Aviation Worker of the Russian Federation е-mail: mag1706@mail.ru1Innovatsyonnye tekhnologii [Innovative Technologies], OJSC, Moscow
The paper stresses on calcium micro-legation effect on the texture of aluminium alloys Al-Mg-Li and Al-Mg-Si-Cu. The mechanical properties of static and dynamic loads, fatigue characteristics, crack resistance and heat resistance of В-1341 alloy sheets with a regulated recrystallized structure in the T1 state are presented. The properties of the sheets are defined also after exposure to long-term heating 100...150 degrees Celsius with exposures of 10...1000 hours.
Keywords: aluminum alloys, alloys of the Al–Mg–Si–Cu system, micro-emience, calcium, technological properties, welding
References
1. Grushko O.E., Ovsyannikov B.V., Ovchinnikov V.V. Aluminum-lithium alloys: metallurgy, welding, metal science [Aliuminievo-litievye splavy: metallurgia, svarka, metallovedenie]. M.: Nauka Publishing House, 2014. – 295 p.
2. Influence of the alkaline and alkaline earth metals impurities on the structure and properties of alloy 1420 [Vliyanie primesey schelochnykh i schelochnozemelnykh metallov na strukturu i svoystva splava 1420] / O.E. Grushko, L.M. Sheveleva, I.P. Zhegina, S.T. Basyuk // Issues of aviation science and technology [Voprosy aviatsionnoy nauki i tekhniki]. 1988. Vol. 2. P. 10‒19.
3. Influence of heat treatment and deformation on the grain size and mechanical properties of duralumin-type alloys [Vliyanie termicheskoy obrabotki I deformatsii na velichinu zerna i mekhanicheskiye svoystva splavov tipa duralumin] / I.N. Friedlander, V.V. Bersenev, E.A. Tkachenko et al. // MiTOM [Mitom]. 2003. No. 7. P. 3‒6.
4. GOST 1497-84. Metals. Tensile testing methods [Metally. Metody ispytanii na rastiazhenie].
5. GOST 11150-84. Metals. Methods of tensile testing at low temperatures [Metally. Metody ispytanii na rastiazhenie pri ponizhennykh temperaturakh].
6. GOST 9651-84. Metals. Methods of tensile testing at elevated temperatures [Metally. Metody ispytanii na rastiazhenie pri povyshennykh temperaturakh].
7. GOST 9.021-74. Unified system of protection against corrosion and aging (ESZKS). Aluminum and aluminum alloys. Methods of accelerated tests for intercrystalline corrosion [Edinaya sistema zaschity ot korrozii i stareniya (ESZKS). Aluminiy i splavy aluminievye. Metody uskorennykh ispytanii na mezhkristallitnuyu korroziyu].
8. GOST 9.904-82. Unified system of protection against corrosion and aging (ESZKS). Aluminum-based alloys. Method of accelerated tests for delaminating corrosion [Edinaya sistema zaschity ot korrozii i stareniya (ESZKS). Aluminiy i splavy aluminievye. Metody uskorennykh ispytanii na rasslaivayuschuyu korroziyu].
9. GOST 9454-78. Metals. Test method for impact bending at low, room and elevated temperatures [Metally. Metod ispytaniya na udarny izgib pri ponizhennykh, komnatnoy i povyshennykh temperturakh].
10. GOST 25.502-79. Calculations and strength tests in mechanical engineering. Methods of mechanical testing of metals. Fatigue testing methods [Raschety i ispytania na prochnost v mashinostroenii. Metody mekhanicheskikh ispytaniy metallov. Metody ispytaniy na ustalost].
11. GOST 25.506-85. Calculations and strength tests. Methods of mechanical testing of metals. Determination of crack resistance characteristics (fracture toughness) under static loading [Raschety i ispytaniya na prochnost. Metody mekhanicheskikh ispytanii metallov. Opredelenie kharakteristik treschinostoykosti (vyazkosti razrushenia) pri staticheskom nagruzhenii].
12. GOST 3248-81. Metals. Creep test methods [Metally. Metody ispytaniy na polzuchesc].
13. Increasing the stampability of sheets made of Al–Mg–Si alloy used for cold stamping [Povyshenie shtampuemosti listov iz splava sisitemy Al–Mg–Si, primeniaemykh pri kholodnoy shtampovke] / M.A. Gureeva, O.E. Grushko, V.V. Ovchinnikov, V.F. Shamray // Forging and stamping production. Processing of metals by pressure [Kuznechno-shtampovochnoe proizvodstvo]. 2007. No. 4. P. 20‒27.
14. Properties of sheets made of high-tech alloy B-1341 [Svoystva listov iz vysokokachestvennogo splava B-1341] / I.N. Friedlander, O.E. Grushko, L.M. Sheveleva, S.F. Danilov // MITOM [MITOM]. 2004. No. 12. P. 3‒6.
15. Structure, exhibition ability and weldability of sheets made of an alloy of the “Avial” type doped with calcium [Struktura, sposobnost k vydavke i svarivaemost listov iz splava tipa “Avial”, legirovannogo kaltsyem] / O.E. Grushko, V.V. Ovchinnikov, V.V. Alekseev, M.A. Gureeva, V.F. Shamrai, G.G. Klochkov // MITOM. 2007. No. 7. P. 15‒22.
НОВОСТИ
МЕДИА
КОНТАКТНАЯ ИНФОРМАЦИЯ
УНИВЕРСИТЕТ
Ученый совет
Кампус
РЕСУРСЫ
Центр подготовки водителей (автошкола)
Центр развития профессионального образования
Центр развития профессионального образования
ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ