Университет | Образование | Наука | Внеучебная жизнь |
Меню Close Menu |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
Rus / Eng
|
Университет | Образование | Наука | Внеучебная жизнь |
Университет |
Образование |
Наука |
Внеучебная жизнь |
English version
Archive of Issues |
Efim A. Kogan1, Associate Professor, Ph.D. in Physic-mathematical Sciences, Associate Professor of Mathematics Dpt., e-mail: kogan_ea@mail.ru.
Alevtina A. Yurchenko2, Ph.D. in Physic-mathematical Sciences, Associate Professor of World Economy Dpt., e-mail: AYrCh@yandex.ru
1Moscow Polytechnic University
2The Academy of Diplomacy of the Ministry for Foreign Affairs of the Russian Federation
The forced non-linear oscillations under the influence of the periodically changing on time cross loading of the sandwich plates modeling some special vehicles panels are studied. Unified approach to the resolution of similar tasks for differently fixed large deflection plates taking into account initial irregularity of surface is realized. The extensive numerical research of influence of various parameters in their wide change range on sandwich plates amplitude-frequency characteristics type is carried out.
Keywords: sandwich plates, geometrically non-linear theory, non-linear oscillations, amplitude-frequency cha-racteristics
References
1. Volmir А.S. Non-linear Dynamics of Plates and Shells. М.: Science, 1972. – 432 p.
2. Kogan Е.А., Yurchenko А.А. Non-linear Oscillations of Sandwich and Laminated Plates and Shells at Periodical Loads (survey) // MGTU MAMI Bulletin. Series 3. Natural Sciences. 2014. Vol. 1. No 1 (19). P. 55–70.
3. Kogan Е.А., Yurchenko А.А. Problems of Non-linear Dynamics of Sandwich Plates and Shells. Saarbrücken, Germany. LAP LAMBERT Academic Publishing, 2014. – 66 p.
4. Grigoliuk E.I., Kogan Е.А. Statics of Resilient Sandwich Shells. М.: Mechanic Research Institute. MGU, 1999. – 215 p.
5. Grigoliuk E.I., Kogan Е.А. Basic mathematical models for deformation and strength of anisotropic shells // Applied Issues of Thin-wall Construction Mechanics: ed. by the acad. of RAS S.S. Grigorian. М.: Publishing House of Moscow University, 2000. P. 56–109.
6. Standardization of multipurpose container-body strength / V.I. Eremin, Е.А. Kogan, N.А. Kulakov et al.// International Scientific-technical Meeting on Car Dynamics and Strength, December 5–8, 1994. Talking Points of Reports. М., 1994. P. 39–41.
7. Grigoliuk E.I., Chulkov P.P. Balance and Oscillations of Sandwich Shells. М.: Mechanical Engineering, 1973. – 172 p.
8. Kogan Е.А., Yurchenko А.А. Non-linear oscillations sandwich plates restrained on profile // Issues of Mechanical Engineering and Reliability of Machines. 2010. No 5. P. 25–34.
9. Donnell L.H., Wan C.C. Effect of imperfections on buckling of thin cylinders and columns under axial compression // J. Appl. Mech. 1950. Vol. 17. No 1. P. 73–83. Discussion on the paper, ibid. P. 340 – 342; русск. перевод: Доннелл Л., Уан К. Влияние неправильностей в форме на устойчивость стержней и тонкостенных цилиндров при осевом сжатии // Механика. Сб. переводов и обзоров иностр. период. лит-ры. 1951. № 4 (8). С. 91–107.
10. Kobelev V.N., Kovarskiy L.М., Timofeev S.I. Analysis of sandwich structures: User guide: ed. by V.N. Kobelev. М.: Mechanical Engineering, 1984. – 304 p.
11. Grigoliuk E.I. Bubnov’s Method. Sources. Formulation. Development. М.: Mechanics Scientific Research Institute of Moscow State University. 1996. – 58 p.
12. Biderman V.L. Applied Theory of Mechanical Oscillations: manual for universities. М.: Vysshaya Shkola Publishing House. – 416 p.
13. Kulikov G.М., Kuleshov Yu.V. Non-linear oscillations of sandwich plates // Bulletin of Tambov University. Series of Natural and Technical Sciences. 2004. V. 9. No 2. P. 264–267.
Sergey V. Polyakov1, PhD Student of the Ground Transport Technological Machines Dpt., е-mail: 555ots@mail.ru
Aleksander E. Pushkarev1, Doctor of Technical Sciences (hab.), Associate Professor, Professor of the Ground Transport Technological Machines Dpt., е-mail: pushkarev-agn@mail.ru
1Saint Petersburg State University of Architecture and Civil Engineering
In the article the influence of strains of tension, torsion and flexure on geometrical parameters and mechanical properties of a rope has being analyzed with nonlinear dependences taking into account undulation. Results of loading the ropes of different geometric parameters and mechanical properties of screw elements are presented. On the base of analysis there were obtained the quantitative values of the deformation influence on ropes of the different and similar geometric parameters and mechanical properties of screw elements.
Keywords: rope, strains, acceptable value, waviness, angle of the coil, rope analysis
References
1. Stiepanov A., Koskin A. A few words more on the properties of viscoelastic winding ropes //
Minine hoisting ′96. Vol. 2: International Scientific and Technical Conference; 8–10 October 1996, Gliwice, Poland. P. 65–68.2. Glushko М.F. Wire Hoist Rope. Kiev: Equipment, 1966. – 327 p.
3. Khalfin М.N., Gurevich А.B., Ivanov B.F. Analysis of Shaft Rope Deformation during Operation. Novocherkassk: Novocherkassk Politechnic Institute, 1990. – 8 p.
4. Мusikhin V.А. Analysis and Design of Wire Twisted Ropes used as prestressed bars: PhD. Paper on Technical Science. Cheliabinsk, 2003. – 206 p.
5. Basis of Technology, Analysis and Mechanical Equipment for Wire Rope Production: manual/ V.D. Koroliov, I.I. Bokov, L.Е. Kandaurov, L.G. Utiaganov. Magnitogorsk: МGМА, 1997. – 171 p.
6. Bukshtein М.А. Wire Rope Production and Usage. М.: Metallurgy, 1973. – 360 p.
7. Kozlov V.Т. Issue of wire rope elastic recoil // Wire Ropes. 1964. I. 1. P. 144–151.
8. Shigarina L.I. Experimental analysis of rope elastic parameters // Strength and Durability of Wire Ropes. 1981. P. 183–189.
9. Ryzhikov V.А. Studying the ropes with irregular technological tension in strands at twisting // Hosting and Loading Apparatus. Novocherkassk: NPI. 1985. P. 94–96.
10. Chumakov А.S., Mereniashev М.I., Gabriuk V.I. Mechanical characteristics of wire ropes // Fish Industry. 1976. No 1. P. 44–46.
11. Ksiunin G.P., Khalfin М.N., Ryzhikov V.А. Influence of regular technological tension on reliability // Bulletin of HS SKNC. 1984. No 1. P. 12–19.
12. Gurevich А.B. Increasing life time of shaft metal-core ropes and methods for their reliability evaluation: author’s abstract of PhD dissertation on Technical Sciences. Ordgonikidze, 1988. – 16 p.
13. Khalfin М.N. Calculation of tensions arising in wires at rope bending // Lifting and Transporting Equipment. 1985. No 16. P. 64–68.
14. Poliakov S.V. Non-linear statics equation of a double-lay rope considering ripple // New Techniques for Technical Objects Movement Control: Proc. of the VIII International scientific conf., Novocherkassk, December 14, 2005. Rostov on Done: HS SKNC Publishing House, 2006. I. 6. P. 83–88.
15. Poliakov S.V. Non-linear statics equation of a twisted rope considering ripple // New Techniques for Technical Objects Movement Control: Proc. of the VIII International scientific conf., Novocherkassk, December 14, 2005. Rostov on Done: HS SKNC Publishing House, 2006. I. 6. P. 88–91.
16. Poliakov S.V. Analysis of a lifting rope with the changed geometrical parameters and mechanical characteristics of screw components // Scientific-Technical Bulletin of Briansk State University. DOI: 10.22281/2413-9920-2019-05-02-257-264. 2019. No 2. P. 257–264.
Aleksander S. Urnev1, PhD student, е-mail: Urnev-AS@yandex.ru .
Aleksander S. Cherniatin2, PhD in Technical Sciences, Leading Researcher, е-mail:
Yurii G. Matvienko1, Doctor of Technical Sciences (hab.), Professor, Honored Science Worker, Head of the Durability, Survivability and Safety of Machines Dpt., е-mail: matvienko7@yahoo.com.
Igor A. Razumovskii1, Doctor of Technical Sciences (hab.), Head of the Fracture and Vitality Mechanics Laboratory , е-mail: murza45@gmail.com
Mikhail Yu. Gavrikov, PhD student of the Design and Durability of Aviation-Rocket and Space Products Dpt.3, Leading Design Engineer4, е-mail: gavrikov.m@gmail.com .
1Blagonravov Institute of Mechanical Engineering of the RAS
2Transneft Scientific Research Institute, JSt.C.
3Moscow Aviation Institute
4IRT Scientific Research Centre
In the paper there are described the methodology and results of the experimental and computation studying the destruction process of a three-layer composite panel with a defect using the fiber-optic deformation sensors grid embedded directly into the composite material. The issues of choosing the optimal sensor grid steps and estimating the defect parameters based on the results of strain measurements at the points of the sensors grid are considered. Test results of the panel with an artificial defect under cyclic loading are presented.
Keywords: layered composite material, delamination defect, fiber-optic sensors, cyclic failure
References
1. Matvienko YU.G. Trends of Non-linear Mechanics of failure in Mechanical Engineering Problems. М.-Izhevsk: Computer Research Institute, 2015. – 56 p.
2. Chernyshev S.L. New stage of using composite materials in aircraft industry // Mechanical Engineering and Automation Issues. 2013. No 1. P. 3–10.
3. Jang, B.-W., Kim, C.-G. Real-time estimation of delamination occurrence induced by low-velocity impact in composite plates using optical fiber sensing system // Composite Structures. 2018. No 189. Р. 455–462.
4. Use of FBG sensors for delamination growth measurement under mode I loading / M. Dvořák, N. Schmidová, M. Kadlec, M. Růžička // EAN 2017 – 55th Conference on Experimental Stress Analysis. 2017. Р. 102–106.
5. Detection of delamination in a composite material based on the measurement of static strain using a surface-mounted fiber Bragg grating sensor / W. Rong, Y. Wang, J.H. Ng, W. Kang, V. Paulose // Optical Engineering. 2011. 50 (1). Art. № 014404.
6. Hill K.O., Meltz G. Fiber Bragg grating technology fundamentals and overview // J. Light w. Technol. 1997. No 15. P. 1263–1276.
7. Kulchin Yu.N. Distributed Fiber-optic Measuring Systems. М.: Fizmatlit. 2001. – 272 p.
8. Lvov N.L., Khabarov S.S., Gavrikov M.Yu. Creation of an integrated system for monitoring the technical condition of high-quality helicopter units based on fiber-optic technology // International Journal of Engineering & Technology – Science Publishing Corporation Inc. 2018. V. 7. No 4.38. P. 1162–1166.
9. High-Strain Fiber Bragg Gratings for Structural Fatigue Testing of Military Aircraft / C. Davis, S. Tejedor, I. Grabovac, J. Kopczyk and T. Ravis // Photonic Sensors. 2012. Vol. 2. N. 3. P. 215–224.
10. Kablov Е.N., Sivakov D.V., Guliaev I.N., Sorokin K.V., Fedotov М.Yu., Dianov Е.М., Vasiliev S.А., Medvedkov О.I. Optical fiber using as sensors of deformation in polimeric composites // All Materials. Encyclopedic Guide. 2010. No 3. URL: http://www.viam.ru/public (date of appl.: 25.11.2019).
11. Udd E. Fiber Optic Sensors: An Introduction for Engineers and Scientists. М.: Technosfera, 2008. – 520 p.
12. Proof of Concept of Impact Detection in Composites Using Fiber Bragg Grating Arrays /
J. Gomez, I. Jorge, G. Durana, J. Arrue, J. Zubia, G. Aranguren, A. Montero and I. López // Sensors. 2013. No 13. P. 11998–12011.13. Buckling behaviour monitoring of a composite wing box using multiplexed and multi-channeled built-in fiber Bragg grating strain sensors /
C.Y. Ryu, J.R. Lee, C.G. Kim, C.S. Hong // NDT&E Int. 2008. No 41. P. 534–543.14. Embedded fibre Bragg grating sensors as a tool for structural health monitoring of complex composite structures / M. Mieloszyk, M. Jurek,
K. Majewska, W. Ostachowicz // Proceedings of the 7th Asia-Pacific Workshop on Structural Health Monitoring, APWSHM. 2018. Р. 108–119.15. Strain measurement in unidirectional carbon fibre utilising embedded optical strain gauges /
P.R. Cook, A. Alavija, S.J. Wildy, J.W. Arkwright // 9th Australasian Congress on Applied Mechanics, ACAM. 2017. November. Sydney: Engineers Australia, 2017. Р. 148–155.16. Jones B.H., Rohr G.D., Kaczmarowski A.K. Sensing delamination in epoxy encapsulant systems with fiber Bragg gratings// Proceedings of SPIE – The International Society for Optical Engineering. 2016. 9852. Art. № 98520G.
17. Silva-Muñoz R.A., Lopez-Anido R.A. Structural health monitoring of marine composite structural joints using embedded fiber Bragg grating strain sensors // Composite Structures. 2009. No 89 (2). Р. 224–234.
18. Mizutani T., Hayashi K., Nishi T., Takeda N., Tanaka K., Namiki F. Structural health monitoring for composite pressure vessels using fiber optic sensors// International Astronautical Federation – 56th International Astronautical Congress. 2005. No 6. Р. 3735–3742.
19. Polilov А.N. Experimental Mechanics of Composites. М.: Bauman Moscow State University Publishing House, 2015. – 375 p.
20. Modeling the crack-like defects in a stratified composite structure /
А.S. Urnev, А.S. Cherniatin, Yu.G. Matvienko, I.А. Razumovskii // Mechanical Engineering and Engineering Education. 2017. No 3. P. 26–34.21. Cherniatin А.S., Razumovskii I.А. Complex analysis of structural elements with surface cracks // Mechanical Engineering and Engineering Education. 2011. No 1. P. 66–76.
22. Chernyatin A.S., Razumovskii I.A. Methodology and Software Package for Assessment of Stress-Strain State Parameters of Full-Scale Structures and Its Application to a Study of Loading Level, Defect Rate, and Residual Stress Level in Elements of NPP Equipment // Strength of Materials. 2013. No. 4. P. 506–511.
23. Razumovskii I.А., Cherniatin А.S. Experimental and computational method for analysis of residual stresses in two-layer elements of a construction with the method of die drilling // Issues of Mechanical Engineering and Machines Reliability. 2011. No 4. P. 101–109.
24. Razumovskii I.А., Cherniatin А.S. Methodology and a programme for determination of stress-strain state parameters on the basis of experimental data processing // Mechanical Engineering and Engineering Education. 2009. No 4. P. 26–32.
25. Amosov А.А., Dubinskiy Yu.А., Kopchenova N.V. Computational Methods for Engineers: manual. М.: Higher School, 1994. – 554 p.
26. Experimental and computational determination of defect sizes at delimination in laminated composite materials / А.S. Urnev, А.S. Chernyatin, Yu.G. Matvienko, I.А. Razumovskii // Plant Laboratory. Materials Diagnosis. 2018. V. 84. No 10. P. 59–66.
Yurii A. Morgunov1, PhD in Technical Sciences, Professor of the Mechanical Engineering Technologies and Equipment Dpt., е-mail: morgunov56@mail.ru
Boris P. Saushkin1, Doctor of Technical Sciences, Professor, Professor of the Mechanical Engineering Technologies and Equipment Dpt., е-mail: sbp47@mail.ru
Boris V. Shandrov1, PhD in Technical Sciences, Professor, Professor of the Mechanical Engineering Technologies and Equipment Dpt., е-mail: b.v.shandrov@mospolytec.ru
1Moscow Polytechnic University
In the paper there are described existing technologies which are the basis for the appearance of the new scientific and technical areas, they provide resources for their development and, most importantly, occasionally they have significant innovative potential.
However, the problems of their development in some cases are sidelined, staying in shadows of the active discussion of the transition to the sixth technological structure, architecture and maintenance of a perspective technological structure.
The financing system of the new areas of science and technology should not base on the residual principle of financing the existing technologies: search and adoption of the optimal decisions are needed. This requires a reasoned correct and adequate development strategy for engineering as a sector of the economy, to reflect development trends of the socio-economic system in general.Keywords: engineering, machine-building technology, innovative development mechanisms, development strategy of engineering
References
1. Kashirin V.P. Philosophical Principles of Technology. Tomsk: TSU Publishing House, 1988. − 284 p.
2. Matalin А.А. Technology of Mechanical Engineering: manual, the 3d issue. St.Petersburg: Lan Publishing House, 2010. – 512 p.
3. High Technologies in Mechanical Engineering / А.G. Suslov, B.М. Bazrov, V.F. Bezyazychnyi et al.; by ed. А.G. Suslov. М.: Mechanical Engineering, 2012. – 528 p.
4. Saushkin B.P. Principles of Technology // New Guide for a Chemist and Technologist: by ed. А.V. Moskvin: Part 8. St. Petersburg: Professional Scientific Production Entirety, 2006. – 1464 p.
5. Ivanov V.V. Innovative Paradigm of the ХХI century. М.: Nauka, 2015. − 383 p.
6. Decree of the President of the Russian Federation «Affirmation of Priority Trends for Development of Science, Technologies and Equipment in the Russian Federation and the List of Crucial Technologies of the Russian Federation of July 7, 2011, No 899». Including an amendment made by Decree of the President of the Russian Federation of December 16, 2015, No 623. Memorandum to the draft of Decree of the President of the Russian Federation «Affirmation of Priority Trends for Development of Science, Technologies and Equipment in the Russian Federation and the List of Crucial Technologies of the Russian Federation». URL: https//base.garant.ru (date of appl.: 12.08.2019).
7. Decree of the President of the Russian Federation of May 07, 2012 «Long term State Policy in Economy». Strategy for Innovative Development of the Russian Federation for period until 2020. Order of the Government of the RF of December 08, 2011 No 2227-р. URL: https//base.garant.ru (date of appl.: 12.08.2019).
8. Long-Range Forecast for Social Economical Development of the Russian Federation for the period until 2030. Ministry of Economical Development, 2013. URL: http://www.economy.gov.ru (date of appl.: 12.08.2019).
9. Bazrov B.М. Systematic approach for mechanical engineering production organization // Russian Engineer. 2017. No 4 (57). P. 58−60.
10. Executive Order of the Government of the RF of August 02, 2010 No 588 «Approval of the Procedure for Development, Realization and Efficiency Evaluation of the Russian Federation State Programmes». URL: http://docs.cntd.ru/document/902228825 (date of appl.: 12.08.2019).
11. Consolidated Annual Report about the Russian Federation State Programmes Realization and Efficiency Evaluation According to 2016 year Results. RF State Programmes Platform. URL: programs.gov.ru (date of appl.: 12.08.2019).
12. Russian Technological Platforms. URL: bio-economy.ru (date of appl.: 12.08.2019).
13. List of Technological Platforms. Decision of Governmental Commission on High Technologies and Innovations of April 01, 2011, the Minutes No 2 of July 05, 2011, the Minutes No 3. Decision of the Presidium of Governmental Commission on High Technologies and Innovations of February 21, 2012, the Minutes No 2. URL: http://economy.gov.ru (date of appl.: 12.08.2019).
14. Kaliatin V.О., Naumov V.B., Nikiforova Т.S. Experience of Europe, the USA and India in sphere of state support of innovation // Russian Law Journal. 2011. No 1 (76). P. 22−25.
15. Procedure for Forming the List of Technological Platforms. Decision of Governmental Commission on High Technologies and Innovations of August 03, 2010, the Minutes No 4. URL: http://economy.gov.ru (date of appl.: 12.08.2019).
16. Raisberg B.А., Zheltonozhko Т.А. Evaluation of quality and efficiency of work in the frame of technological platforms as a tool for activity coordination of innovative process participants // MGTU MAMI Bulletin. 2014. Vol. 5. No 1 (19). P. 65−71.
17. Executive Order of the Government of the RF of April 18, 2016 No 317 «Realization of National Technological Initiative». URL: base.garant.ru (date of appl.: 12.08.2019).
18. National Technological Initiative. Programme of Measures on Forming Fundamentally New Markets and Creating Conditions for Global Technological Leadership of Russia by 2035. URL: fogirro.ru (date of appl.: 12.08.2019).
19. Peskov D.N. National Technological Initiative: goals, principles and achieved results. URL: http://static. government.ru/media/files/ (date of appl.: 12.08.2019).
20. Danilin I.V., Mamediarov Z.А. National Technological Initiative: a new focus and challenges at realization of the Russian Policy in Innovation // Year of Globe: Economy, Policy, Safety. Yearbook: Issue of 2016. Moscow, 2016. P. 121–131.
21. Schubert D. National Technological Initiative of Russia. URL: http://yandex.ru (date of appl.: 12.08.2019).
22. Ivanova Е.V. Technological transformation of the contemporary economic system: the theory and Methodology: author’s abstract of Doctor’s dissertation in Economics. М., VZFEI. 2009. − 48 p.
23. Sukharev О.S. Economic policy of Russia reindustrialization: opportunity and limits // Priority for Russia. 2013. No 24 (213). P. 2−6.
24. Машиностроение в условиях инновационной парадигмы развития произ:водственных систем: монография / Ю.А. Моргунов, Б.П. Саушкин: под науч. ред. Б.П. Саушкина. М.: Московский Политех, 2019. – 340 с.
25. Моргунов Ю.А., Саушкин Б.П. Состояние и динамика развития машиностроительного производства России // Вестник машиностроения. 2019. № 5. С. 84–85.
26. Моргунов Ю.А. Инновационный потенциал и оценка резервов развития наукоемких технологий машиностроения // Экономические стратегии. 2019. № 2. С. 126–133.
27. Моргунов Ю.А., Саушкин Б.П., Шандров Б.В. Наукоемкость машиностроительного производства и его элементов// Наукоемкие технологии в машиностроении. 2019. № 6 (96). С. 37–44.
28. Моргунов Ю.А., Полуянов В.С., Саушкин Б.П. Анализ динамики и выявление тенденций развития наукоемких технологий машиностроения // Экономические стратегии. 2017. № 7 (149). С. 110–119.
Yuliia A. Sepeseva1, Postgraduate Student of Standartization, Metrology and Sertification Department, e-mail: sepeseva15@mail.ru
Vladimir V. Martishkin1, Ph.D. in Technical Sciences, Associate Professor of Standartization, Metrology and Sertification Department, e-mail: vmartishkin@mail.ru
Ivan S. Petukhov1, Senior Teacher of Metal Forming and Additive Technologies Dpt., е-mail: ivanpetukhovs@yandex.ru
1Moscow Polytechnic University
The parameters affecting on the quality of parts obtained by gas molding in the mode of material superplasticity are considered in the paper. The mathematical model and the algorithm for calculating the quality of die tooling for its readiness assessment for gas assist forming in the mode of material superplasticity have been developed. There have been identified technical-engineering solutions that can contribute to the defectiveness coefficient reduction at hemispheres production from titanium alloy.
Keywords: technological process, the superplasticity of a material, the quality of the component that determines the detail, titanium alloy
References
1. Sobolev Ya.А., Petukhov I.S. Viscous-plastic forming the dome-shaped shells by gas // MGTU MAMI Bulletin. 2013. Vol. 2. No 2. P. 67–71.
2. High-pressure tanks and fuel tanks from titanium alloy for spacecraft. Production Technology Development / N.А. Markachev, K.I. Mikhalevskii, Ya.А. Sobolev, K.Ya. Savinkova // Lavochkin Research Production Entirety Bulletin. 2017. No 4 (38). P. 171–176.
3. Sobolev Ya.А., Petukhov I.S. Method for deformation control of a titanium alloy sheet bar with changing of it temperature field // Bulletin of Tula State University. Technical Sciences. 2017. No 11-1. P. 247–252.
4. Martishkin V.V., Zaitsev S.А., Sepeseva Yu.А. Evaluation of technical products quality. P. 2. Evaluation of technical products quality by the method of a characteristic detail // Mechanical Engineering and Engineering Education. 2018. No 1. P. 17–25.
5. Martishkin V.V., Zaitsev S.А., Sepeseva Yu.А. Evaluation of technical products quality. P. 1. Usage of Gaussian distribution characteristics at analysis of technical products quality // Mechanical Engineering and Engineering Education. 2018. No 4 (53). P. 2–10.
6. Zotkin V.Е. Methodology for choosing the materials and strain-hardening technology in mechanical engineering. М.: INFRA-М, 2008. – 320 p.
7. Zaitsev S.А., Parfenieva I.Е., Viacheslavova О.F. Quality Control: manual. М. Knorus Publishing House, 2018 . – 421 p.
8. OK 020-95 National Classification of Parts Produced with Welding, Soldering, Bonding and Thermal Cutting. M: Standards Publishing House, 1995.– 20 p.
9. OK 021-95 Russian classification of Parts and Engineering. M: Standards Publishing House, 1995. – 250 p.
10. Quality control of mechanical engineering production / М.М. Kane et al. М.: Machinostroenie Publishing House, 2010. – 415 p.
НОВОСТИ
МЕДИА
КОНТАКТНАЯ ИНФОРМАЦИЯ
УНИВЕРСИТЕТ
Ученый совет
Кампус
РЕСУРСЫ
Центр подготовки водителей (автошкола)
Центр развития профессионального образования
Центр развития профессионального образования
ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ