Университет | Образование | Наука | Внеучебная жизнь |
Меню Close Menu |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
Rus / Eng
|
Университет | Образование | Наука | Внеучебная жизнь |
Университет |
Образование |
Наука |
Внеучебная жизнь |
English version
Archive of Issues |
G.S. Filippov, V.A. Glazunov, M.M. Laktionova, A.N. Terekhova, L.V. Gavrilina
Gleb S. Filippov1, Ph.D. in Physic-Math. Sciences, Deputy Director, е-mail: filippov.gleb@gmail.com
Viktor A. Glazunov1, Ph.D. (habil.) in Technical Sciences, Director, е-mail: vaglznv@mail.ru
Maria M. Laktionov1, Ph.D. Student, е-mail: info@imash.ru
Anna N. Terekhova1, Ph.D. in Technical Sciences, Researcher, е-mail: anya-terehova@bk.ru
Lubov V. Gavrilina1, Researcher, е-mail: griboedova04@mail.ru
1Blagonravov Institute of Mechanical Engineering of the RAS
The mechanisms of parallel-sequential structure with good prospects for various fields using are presented. The 5DOF mechanism is suitable for additive technologies, surgical operations, high-precision surgery and spine surgery using. The work contains the kinematic analysis of the mechanism and velocity calculation.
Keywords: parallel-sequential structure mechanism, 5DOF, additive technologies, vertebral surgery.
References
1. Ganiev R.F. Problems of Machine Mechanics and Technologies. Prospectes for development of Blagonravov Institute of Mechanical Engineering of the RAS. Part I // Problems of Mechanical Engineering and Machine Reliability. 2010. No 1. P. 3–20.
2. Grigoriants А.G., Tretiakov R.S., Funtikov V.А. Quality improvement of parts surfaces made by laser additive technique // Mechanical Engineering Technology. 2015. No 10. P. 68–73.
3. Permiakov М.B., Permiakov А.F., Davydova А.М. Additive Techniques in Building // European Research. 2017. No 1 (24). P. 14–15.
4. Glazunov V.А. Parallel Structure Mechanisms and Their Usage: Robotic-Technical, Technological, Medical, Educational Systems. М.-Izhevsk: Institute of Computer Research, 2018. – 1036 p.
5. Ganiev R.F., Glazunov V.А. Manipulative mechanisms of parallel structure and their applications in modern equipment // Proc. of Academy of Sciences. 2014. Т. 459. No 4. P. 1–4.
6. Korendiasev А.I., Salamandra B.L., Tyves L.I. Theoretical Principles of Robotics. М.: Science, 2006. Book. 1: 382 p.; Book. 2: 375 p.
7. Chunikhin А.Yu., Glazunov V.А. Design of 5DOF parallel structure mechanisms serving for technological robots // Problems of Mechanical Engineering and Machine Reliability. 2017. № 4. С. 3–11.
8. RF Patent for the model No 160127. Spatial Mechanism with Five Degrees of Freedom. Chunikhin А.Yu., Glazunov V.А., Skvortsov S.А., Dukhov А.V. В25J 1/00, Appl. 2015106848/02, 27.02.2015. Published on 10.03.2016. Bulletin No 7.
9. Yuschenko А.S. Collaborative Robotics – new problems and solutions // Proc. of the X National Multiconference on Control Issues (МCCI-2017) in three books. 2017. P. 137–139.
10. Grigoriants А.G., Shishov А.Yu., Funtikov V.А. Techniques for local laser treatment of grain-oriented electrical steal by direct diode lasers // Technology of Mechanical Engineering. 2017. No 8. P. 37–42.
11. Filippov G.S., Glazunov V.А. Prospects for parallel structure mechanisms usage in additive techniques for production of nozzle central body of a turbojet engine, high-precision surgical manipulations, probe diagnostics // Problems of Mechanical Engineering and Automation. 2018. No 3. P. 121–128.
12. Ganiev R.F., Glazunov V.А., Filippov G.S. Actual problems of mechanical engineering and ways of their solutions. Wave and additive techniques, machine-tool manufacture, robotic surgery // Problems of Mechanical Engineering and Machine Reliability. 2018. No 5. P. 16–25.
13. Ceccarelli M. Mechanism Design for Robots // The 11th IFToMM International Symposium on Science of Mechanisms and Machines. 2014. PP. 1–8.
14. Formalskii A.M. Unstable Mechanical Objects: Motion Control, Stabilization // Horizon Research Publishing Corporation. Universal Journal of Mechanical Engineering. 2017. Т. 5. № 5. С. 150–169.
Serguey G. Voronin1, Ph.D. (habil.) in Technical Sciences, Professor, Professor of Aircraft Dpt., е-mail: voroninsg@susu.ru
Andrey I. Sogrin1, Ph.D. in Technical Sciences, Associate Professor of Aircraft Dpt., е-mail: sogrinai@susu.ru
Konstantin V. Romanov 1, Student of Master Programme of Aircraft Dpt., е-mail: kost.romanov2012@yandex.ru
1South Ural State University, Cheliabinsk
The paper proposes the method for the selecting and the calculating the electric drive parameters, which implies a joint choice of the engine and the gear ratio of the gearbox. It guarantees the specified driving dynamics, taking into account the need to minimize the energy consumption and the weight and size parameters of all equipment. The proposed expressions for calculating the main parameters of the electric drive are: the dynamic quality, the required power and the optimal gear ratio of the gearbox. The electric drive parameters in the proposed method are presented as functions of given dynamic indicators and they are determined by simple analytical relations. In addition, expressions are given for calculating the main dimensions of the engine, allowing an approximate estimate of its weight and dimensions, if it was not possible to select a standard electric machine. In conclusion, a dynamic model of the electric drive is presented for checking and refining the choice made.
Keywords: executive electric drive, speed of operation, optimization of parameters, optimal gear ratio of reducer, executive electric motor, mathematical modeling, dynamic model of electric drive.
References
1. Siavash Rezazadeh and Jonathan W. Hurst. On the optimal selection of motors and transmissions for electromechanical and robotic systems // 2014 IEEE/RSJ international Conference on Intelligent Robots and Systems, IEEE. 2014. P. 4605–4611.
2. Pasch K., Seering W. On the drive systems for high-performance machines // ASME Journal of Mechanisms, Transmissions, and Automation in Design. 1984. Vol. 106. P. 102–108.
3. Servo motor selection criterion for mechatronic applications / H.J. Van de Straete, P. Degezelle, J. De Schutter, and R.J. Belmans // IEEE/ASME Transactions on Mechatronics. 1998. Vol. 3. No. 1. P. 43–50.
4. Van de Straete H.J., De Schutter J., Belmans R.J. An efficient procedure for checking performance limits in servo drive selection and optimization // Mechatronics. IEEE/ASME Transactions on Mechatronics. 1998. Vol. 4. No. 4. P. 378–386.
5. Van de Straete H.J., De Schutter J., Leuven K.U. Optimal variable transmission ratio and trajectory for an inertial load with respect to servo motor size // Journal of Mechanical Design. 1999. Vol. 121. P. 544–551.
6. Fredrik Roos, Hans Johansson, and Jan Wikander. Optimal selection of motor and gearhead in mechatronic applications // Mechatronics. 2006. Vol. 16. No. 1. P. 63–72.
7. Cetinkunt S. Optimal design issues in high-speed high-precision motion servo systems // Mechatronics. 1991. Vol. 1. No. 2. P. 187–201.
8. Cusimano G. Generalization of a method for the selection of drive systems and transmissions under dynamic loads // Mechanism and Machine Theory. 2005. Vol. 40. No. 5. P. 530–558.
8. Cusimano G. Choice of electrical motor and transmission in mechatronic applications: The torque peak // Mechanism and Machine Theory. 2011. Vol. 46. No. 9. P. 1207–1235.
9. Giberti H., Cinquemani S., Legnani G. A practical approach to the selection of the motor-reducer unit in electric drive systems // Mechanics Based Design of Structures and Machines. 2011. Vol. 39. No. 3. P. 303–319.
10. Selection and design of drive modules for robot joint based on dynamic load characteristics / Seo Jung-moo, Rhyu Se-hyun, Seo Jang-ho, Jung Hyun-kyo // International Journal of Control, Automation, and Systems: IJCAS; Heidelberg. 2017. Vol. 15. No. 2. P. 790–801.
11. A motor selection technique for designing a manipulator / C. Choi, S. Jung, S. Kim, J. Lee, T. Choe, S. Chung, and Y. Park // Proc. of International Conference on Control, Automation and Systems, 2007. P. 2487–2492.
12. Voronin S.G. Aircraft Electric Drive: Lectures. Cheliabinsk: South Ural State University Publishing House, 2006. Part 1. − 171 p.
13. Polkovnikov V.А., Petrov B.I., Ryvkin S.Е. Aircraft Electric Drive: matanual for aviation higher schools: 3rd edition. М.: Mashinostroenie, 1990. – 352 p.
14. Dynamic models of an ac converter-fed motor at different combinations of parameters / S.G. Voronin, D.V. Korobatov, R.Т. Kiiakpaev, А.S. Kulmukhametova // Bulletin of Academy of Electric Sciences of the RF (AESRF). Publishing House of the AESRF. 2011. No 12. P. 47−52.
15. Krymov B.G., Rabinovich L.V., Stebletsov V.G. Final Control Devices for Aircraft Control Systems. М.: Mashinostroenie, 1987. − 264 p.
16. But D.А. Contactless electric machines: manual for electric mechanical and electric power higher schools. М.: Higher School, 1990. − 416 p.
17. Lifanov V.А. Design of light-duty electric machines with permanent magnet excitation: manual: 2nd edition, revised and added. Cheliabinsk: SUSU Publishing House, 2010. – 164 p.
18. Rudolf Richter. Elektrische Maschinen. Zweiter Band: Synchronmaschinen und Einan-kerumformer // Springer Basel. eBook ISBN 978-3-0348-4139-9, DOI 10.1007/978-3-0348-4139-9. 707 p.
19. Yuferov F.М. Electrical machines of automation devices. М.: Higher Schools, 1988. – 479 p.
Konstantin V. Krestnikovskii1, Ph.D. Student, е-mail: konstantinkrestnikovskii@mail.ru
Grigory Ya. Panovko, Honoured Scientist of the Russian Federation, Ph.D. (hab.) of Technical Sciences, Professor, head of Vibromechanics Laboratory1, Professor of Applied Mechanics Dpt.2, е-mail: ganovko@yandex.ru
Aleksandr E. Shokhin1, Ph.D. of Technical Sciences, Senior Researcher, е-mail: shohinsn@mail.ru
1Blagonravov Institute of Mechanical Engineering of the RAS
2Bauman Moscow State Technical University
The article proposes the self-regulated unbalance scheme of a centrifugal vibration exciter, which automatically maintains the constancy of the vibration velocity of the vibration machine working body at the tuning to the resonant oscillation mode, regardless of the change in mass of the processed medium (process load). The method and results of calculating the parameters of the elastic suspension of an additional inertial unbalance element, sensitive to changes in the speed of rotation, are presented.
Keywords: vibration machine, centrifugal vibration exciter, self-regulating unbalance, resonant mode.
References
1. Vibrations in Equipment: Guide; in 6 vol.: Ed. Board: V.N. Chelomey (Chief). М.: Mechanical Engineering. Vol. 4. Vibrating Processes and Machines: ed. by E.E. Lavendel. 1981. – 509 p.
2. Bykhovskiy I.I. Principles of the Theory of Vibrating Equipment. М.: Mechanical Engineering, 1968. – 362 p.
3. Patent 727240 USSR, М. Cl. В 06 В1/16. Unbalance Vibration Exciter. S.А. Kruchinin, L.G. Khodorkovskiy, N.Е. Vakatov; publ. 25.04.80. Bull. No 38.
4. Patent 967586 USSR, М. Cl. В 06 В1/16. Unbalance Vibration Exciter. S.А. Kruchinin, L.G. Khodorkovskiy, N.Е. Vakatov; publ. 01.11.82. Bull. No 39.
5. Patent 2324548 the Russian Federation, MPK В06В1/16. Unbalance Vibration Exciter. V.N. Dmitriev, А.А. Gorbunov, I.I. Mavziutov; publ. 20.05.2008. Bull. No 14.
6. Patent 2324546 the Russian Federation, MPK В06В1/16. Unbalance Vibration Exciter. V.N. Dmitriev, А.А. Gorbunov; publ. 20.05.2008. Bull. No 14.
7. Patent 985486 USSR, М. Cl. В 06 В1/16. Hydraulic Unbalance Vibration Exciter. V.А. Kopaev, R.S. Kosinskiy; publ. 30.12.82. Bull. No 48.
8. Niselovskaya Е.V., Panovko G.Ya., Shokhin А.Е. Mechanical system vibrations excited by an unbalanced rotor of an asynchronous motor // Problems of Mechanical Engineering and Machine Reliability. 2013. No 6. P. 17–23.
9. Panovko G.Y., Shokhin A.E., Eremeikin S.A. The control of the resonant mode of a vibrating machine that is driven by an asynchronous electro motor // Journal of Machinery Manufacture and Reliability. 2015. Vol. 44. No 2. P. 109–113.
10. Comparative analysis of two control algorithms of resonant oscillations of the vibration machine driven by an asynchronous ac motor / G. Panovko, A. Shokhin, S. Eremeykin, A. Gorbunov. Journal of Vibroengineering. 2015. Vol. 17. No 4. P. 1903–1911.
11. Patent 185975 the Russian Federation, MPK B 06 B 1/16. Centrifugal Vibration Exciter with a regulated static moment of unbalance mass / Panovko G.Ya. et al.; publ. 25.12.2018. Bull. No 36.
12. Biderman V.L. Theory of Mechanical Fluctuations. М.: URSS, 2017. – 416 p.
13. Goncharevich I.F., Frolov K.V. Theory of Vibrating Equipment and Technique. М.: Nauka, 1981. – 319 p.
Aleksey I. Siritsyn1, Ph.D. in Technical Sciences, Associate Professor, Associate Professor of the Department of the Mechanical Engineering Techniques and a Computer-aided Design System, е-mail: aleksey.siritsin@yandex.ru
Eduard V. Shirokikh1, Ph.D. in Technical Sciences, Associate Professor, Head of the Department of the Mechanical Engineering Techniques and a Computer-aided Design System, е-mail: shred49@mail.ru
Andrey A. Popov1, Four year Bachelor Student, е-mail: andrew1596@yandex.ru
Nadezhda N. Adamushko1, Ph.D. in Physic-Math. Sciences, Associate Professor, Associate Professor of the Natural-Science Department, е-mail: adamushkon@bk.ru
1Kolomna Institute (branch) of Moscow Polytechnic University
In the article there are stated features of design and the choice of rational design parameters of the hinged head spindle unit for the lathe under conditions providing the specified rigidity and vibration resistance of the unit. The obtained exponential dependences allow making the designed proximate analysis of the effect of a spindle assembly rigidity on console values of the spindle and its distance between supports at early design stages.
Keywords: mounted on the spindle head; design; design parameters; the stiffness of the spindle assembly; distance between supports; console overhang; exponential function; the vibration resistance of spindle assembly.
References
1. Gasparov E.S. Dynamic Quality Assurance for High-Speed Spindle Units on the Base of Modeling and Visual Estimation of Brackets Conditions: Ph.D. Paper on Technical Sciences. – Samara, 2016. URL: http://www.ulstu.ru/main?cmd=file&object=13216 (date of application: 03.12.2018).
2. Siritsyn А.I., Bashkirov V.N., Shirokikh E.V. Improvement of treatment vibrostability on borring-and-turning mills with numerical control // Contemporary Problems of Machines Theory: Proc. of IV Intern. Distance Scientif. Conference. Novokuznetsk: NIC МС. 2016. No 4 (2). P. 119–128.
3. Siritsyn А.I., Bashkirov V.N., Shirokikh E.V. Improvement of treatment vibrostability on borring-and-turning grinding machine with numerical control // Complex Problems of development of Science, Education and Economy of Region. Scientific Journal of Kolomna Institute (Branch) of Moscow Polytechnic University. 2016. No 2 (9). P. 49–59.
4. Metal-Cutting Machines: manual for Mechanical Engineering Higher Schools; ed. by V.E. Push. М.: Mashinostroenie, 1986. – 256 p.
5. Metal-Cutting Machines and Automatic Machines: manual for Mechanical Engineering Higher Schools; ed. by А.S. Pronikov. М.: Mashinostroenie, 1981. – 479 p.
6. Kaminskaya V.V., Levina Z.М. Design of Machine Stiffness. М.: Mashinostroenie, 1983. – 47 p.
7. Kirilin Yu.V., Shesternikov А.V. Calculation and Design of Cutting Machine Spindle Units with Rolling Bearing: manual. – Ulianovsk: Ulianovsk State Technical University, 1998. – 72 p.
8. Patent RU No 2396147, MPK: B23B 19/02. Spindle Unit and Method for Frequency Control of its Oscillations / А.V. Shipulin, I.V. Korneev, K.Е. Shkinev, I.V. Мoldovanov; publ. 10.08.2010, bull. No 22.
9. Stabilization of machine dynamic state as a basis for solving the problems of precision improvement at mechanical details / B.М. Brzozovski, М.B. Brovkova, V.V. Martynov, I.N. Yankin // Bulletin of SGTU. Machine Reliability. 2006. No 3 (14). P. 61–70.
10. Siritsyn А.I. Design of a Drive of Main Motion and Feed of Cutting Machines with Numerical Control: manual. Kolomna: Kolomna Institute of MPU, 2001. – 85 p.
11. Perel L.Ya. Frictionless Bearing: guide. М.: Mashinostroenie, 1983. – 543 p.
12. Choosing the most appropriate line of a trend for data. URL: https://support.office.com/ru-ru/article/Выбор-наиболее-подходящей-линии-тренда-для-данных-1bb3c9e7-0280-45b5-9ab0-d0c93161daa8 (date of application: 29.11.2018).
Aleksander N. Polilov1, Doctor of Technical Sciences, Professor, Head of the Laboratory of the Composite Structures Safety and Durability, е-mail: polilov@imash.ru
Nikolai A. Tatus1, PhD in Technical Sciences, Senior Researcher of the Laboratory of the Composite Structures Safety and Durability, е-mail: nikalet@mail.ru
1Blagonravov Institute of Mechanical Engineering of the RAS
The brief analysis was conducted for direct, technological and design effects of low modulus and high strength GFRP application for elastic members like equistrong leaf springs. The «ideal» shaped equistrong leaf springs can accumulate the same elastic energy with threefold mass reduction, and due to their low density and Young modulus it is possible to provide approximately 15 times of mass reduction in compare with steel analog of multi-leaf spring.
Keywords: composite material, low-modulus and high-strength GFRP – glass-fiber-reinforced-plastic, equistrong leaf spring, shaped beam.
References
1. Polilov А.N. Sketchs of Composite Mechanics. М.: Fizmatlit, 2015. – 320 p.
2. Gibson R.F. Principles of Composite Material Mechanics. Third Edition. CRC Press Content, 2011. – 683 p.
3. Polilov А.N., Tatus N.А. Biomechanics of Fibre Composites Strength. М.: Fizmatlit, 2018. – 328 p.
4. Liukshin B.А. Composite Materials. Tomsk, 2012. – 102 p.
5. Polilov А.N., Tatus N.А. Design of branching or profile composite parts similarly to the wood crown structure // Issues of Mechanical Engineering and Machine Durability. 2017. No 6. P. 76–84.
6. Volkova N.V., Golovanov V.I., Medvedev V.V. Using the composite-fibre materials for crashpad constructions // Proc. of Krylov State Scientific Centre. 2017. No 3 (381). P. 129–132.
7. Polilov А.N., Tatus’ N.А., Plitov I.S. Evaluation of influence of fibre misalignment on stiffness and reliability of profile composite elements // Problems of Mechanical Engineering and Machine Reliability. 2013. No 5. P. 58–67.
8. Using tailored fibre placement technology for stress adapted design of composite structures / A. Spickenheuer, M. Schulz, K. Gliesche, G. Heinrich // Plast. Rubber Compos. – Macromol. Eng., 2008. V. 37. No. 5. Р. 227–232.
9. Malakhov A.V., Polilov A.N. Design of composite structures reinforced curvilinear fibres // Composites: Part A. 2016. Vol. 87. P. 23–28.
10. Polilov А.N., Tatus N.А. Experimental foundation for fibre composite strength criteria, showing the directed destruction // Bulletin of Perm National Research Polytechnic University. Mechanics. 2012. No 2. P. 140–166.
11. Shishkovskiy I.V. Principles of Additive Techniques of High Resolution. San-Petersburg: Piter Publishing House, 2015. – 348 p.
12. Zlenko М.А., Nagaitsev М.V., Dovbysh V.М. Additive Techniques in Mechanical Engineering: manual for engineers. М.: NAMI, 2015. – 220 p.
НОВОСТИ
МЕДИА
КОНТАКТНАЯ ИНФОРМАЦИЯ
УНИВЕРСИТЕТ
Ученый совет
Кампус
РЕСУРСЫ
Центр подготовки водителей (автошкола)
Центр развития профессионального образования
Центр развития профессионального образования
ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ