Университет | Образование | Наука | Внеучебная жизнь |
Меню Close Menu |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
Rus / Eng
|
Университет | Образование | Наука | Внеучебная жизнь |
Университет |
Образование |
Наука |
Внеучебная жизнь |
English version
Archive of Issues |
Yuri L. Karavaev1, Ph.D. in Physic-mathematic science, Associated Professor of Mechatronic systems Department, e-mail: karawaew_yura@mail.ru
Anton V. Klekovkin1, Ph.D. student of Mechatronic systems Department, e-mail: klanvlad@mail.ru
Kirill S. Efremov1, Ph.D. student of Mechatronic systems Department, e-mail: ks.efremov18@gmail.com
Viacheslav Shestakov1, Master student of Mechatronic systems Department, e-mail: slafik9526@gmail.com
1Izhevsk State Technical University named after M.T. Kalashnikov
This paper is dedicated to solve a task of autonomous obstacle avoidances, which arise on a path of motion of a highly maneuverable omniwheel mobile robot. Design description and a system architecture of the mobile robot are described. Mobile robot functionality is realized by means of instrumentality of the ROS meta-operating system. Experimental research results, the developed control algorithm for the created prototype of a mobile robot are described.
Keywords: omniwheel robot, lidar, navigation, simultaneous localization and mapping (SLAM).
References
1. Pisarevsky А.N., Cherniavsky А.F., Аfanasiev G.K. Technical vision systems (principles, hardware and tmathematical support). L.: Mashinostroenie, 1988. – 424 p.
2. Algorithms for four-wheel robots control at the moving on cross country / М.I. Evstigneev, Yu.V. Litvinov, V.V. Mazulina, G.М. Mischenko // Proceedings of Higher Schools. Instrument Making. 2015. Vol. 58. No 9. P. 738–741.
3. Boucher S. Obstacle detection and avoidance using turtlebot platform and xbox kinect // Department of Computer Science, Rochester Institute of Technology. 2012. P. 56.
4. Karavaev Yu.L., Klekovkin А.V., Lesin S.K. The multi-sensor information-measuring system for moving in non-determined medium // Intelligence Systems at Manufacturing. 2016. No. 4. P. 111–115.
5. Borisov A.V., Kilin A.A., Mamaev I.S., Dynamics and Control of an Omniwheel Vehicle // Regular and Chaotic Dynamics. 2015. Vol. 20. No. 2. P. 153–172.
6. Karavaev Yu.L., Kilin А.А. Dynamics of a super robot with an internal omniwheel platform // Nonlinear Dynamics. 2015. Vol. 11. No. 1. P. 187–204.
7. Kilin А.А., Karavaev Yu.L. Kinematic model for a super robot control with an unstable omni-wheel platform // Nonlinear Dynamics. 2014. Vol. 10. No 4. P. 497–511.
8. ROS: an open-source Robot Operating System / Quigley M. et al. // ICRA workshop on open source software. 2009. Vol. 3. No. 3.2. P. 5.
9. Grisetti G., Stachniss C., Burgard W. Improved techniques for grid mapping with rao-blackwellized particle filters // IEEE transactions on Robotics. 2007. Vol. 23. No. 1. P. 34–46.
10. Experimental investigations of a highly maneuverable mobile omniwheel robot / A.A. Kilin, P. Bozek, Y.L. Karavaev, A.V. Klekovkin, V.A. Shestakov // International Journal of Advanced Robotic Systems. 2017. Vol. 14. No. 6. P. 1–9.
11. Ge S. S., Cui Y. J. Dynamic motion planning for mobile robots using potential field method // Autonomous Robots. 2002. Vol. 13. No. 3. P. 207–222.
12. Wang Y., Chirikjian G.S. A new potential field method for robot path planning // Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on. – IEEE. 2000. Vol. 2. P. 977–982.
Ilia G. Rukovitsyn1, Ph.D. in Technical Sciences, Senior Researcher, е-mail: irukovitsyn@mail.ru
Vladislav A. Asadulin1, Ph.D. in Technical Sciences, Head of Scientific-research department, е-mail: kabinet925@gmail.com
1Main Scientific Research Test Center of the Russian Ministry of Defence
The article deals with the elastic rotor of a turboexpander with a system of active magnetic suspension, as well as ssues related to the device of magnetic suspension for an elastic rotor. To maintain the longitudinal axis of the rotor in the central position on the active magnetic bearings, it is necessary to take into account vibrations and dynamic loads arising during the rotation of the rotor, which can have a strong impact on stability of the electroniccontrol system of the electromagnetic suspension. As the example of the developed mathematical model of the elastic rotor of the turboexpander with the use of the finite element method, the analysis of the dynamic characteristics of the rotor is carried out. The results of studies of a turboexpander rotor dynamics with a magnetic suspension system are presented, the analysis of which gives a comprehensive idea of the most importantfeatures of oscillations of the turboexpander elastic rotor on magnetic bearings.
Keywords: rotor, magnetic suspension, critical rotor speed, gyroscopic forces, robotic systems.
References
1. Leontiev М.K., Davydov А.L., Degtiarev S.А. Dynamics of rotor systems based on magnetic bearings // Gas-turbine Technologies. 2011. No 3. P. 16–22.
2. Zhuravlev Yu.N. Active Magnetic Bearings: Theory, Design, Usage. San-Petersburg: Politekhnika (Polytechnic), 2003. – 206 p.
3. Rukovitsyn I.G. Development of a rotor mathematic model on the magnetic hanger // Proc. of the IV Scientific-practice Conference of Young Specialists and Students in memory of the Chief Structural Engineer Academician V.A. Kuznetsov. М.: Bauman Moscow State Technical University, 2007. P. 197–205.
4. Leontiev М.K., Davydov А.L., Degtiarev S.А. Dynamics of rotor systems with magnetic bearings // Bulletin of Moscow Aviation Institute. 2012. Vol. 19. No 1. P. 91–101.
5. Kostiuk А.G. Turbomachines Dynamics and Strength: 3rd edit. М.: Publishing House of the National Research University "Moscow Power Engineering Institute", 2007. – 476 p.
6. Gienta G. Kinetic Energy Storage. Theory and Practice of Advanced Flywheel Systems. М.: Mir (World), 1988. – 430 p.
7. Identification of rotor dynamic behavior in the magnetic hanger system / А.S. Abduragimov, V.P. Vereschagin, А.V. Rogoza, I.G. Rukovitsyn, А.P. Sarychev // Electromechanics Issues. Proc. Of VNIIEM. 2014. Vol. 143. P. 7–10.
8. Rotor dynamic analysis of RM12 jet engine rotor using ANSYS // Department of mechanical engineering, Blekinge institute of technology, Karlskrona, Sweden 2012. URL: https://ru.scribd.com/document/270818534/RotorDynamic-Analyis-of-Rm21-Enginer (дата обращения: 20.08.2018).
9. Rotor dynamic analysis of 3D-modeled gas turbine rotor in ANSYS. URL: http://www.solid.iei.liu.se/Publications/Master_thesis/2009/LIU-IEI-TEK-A--0900654--SE_JoakimSamuelsson.pdf (дата обращения: 20.08.2018).
10. Erik Swanson, Chris D. Powell, Sorin Weissman. A Practical Review of Rotating Machinery Critical Speeds and Modes. URL: http://www.sandv.com/downloads/0505swan.pdf (дата обращения: 20.08.2018).
Valentin Teraud1, Doctor of Technical Science, Senior Researcher, е-mail: ldrnww@gmail.com
1Mechanics Research Institute of Lomonosov Moscow State University
The process of loss of stability (localization of deformations) in the creep of stretch samples is considered. On the basis of the Drucker stability postulate, a mathematical inequality is obtained for the stable stretching of the sample. Using the known experimental data on the creep of various materials and applying the theoretical Drucker criterion, the instants of instability of the beginning of the unstable stretching (the moment of neck formation) were obtained.
Keywords: creep, deformation localization, necking, stability, theory.
References
1. Rabotnov Yu.N. Creep of Structure parts. М.: Nauka (Science), 1966. – 752 p.
2. Kachanov L.М. Principles of Fracture Mechanics. М.: Nauka (Science), 1974. – 312 p.
3. Sosnin О.V., Gorev B.V., Nikitenko А.F. Energetic Version of Creep Theory. Novosibirsk: Institute of hydrodynamics named after М.А. Lavrentiev, 1986. – 96 p.
4. Lokoshchenko A.M. Creep and long-term strength of metals. М.: Fismatlit, 2016. 504 p. (translation of: Lokoshchenko A.M. Creep and long-term strength of metals. CISP. CRC Press. Taylor & Francis Group. Boca. Raton. London. New York. 2018. 545 p.).
5. Teraud V.V. Experimental criteria for location of creep deformations in rectangular specimens at high temperature // Bulletin of Mechanical Engineering. 2017. No 7. P. 28–34.
6. Swift H. Plastic instability under plane stress // J. Mechanics Physics Solids. 1952. Vol. 1. P. 1–18.
7. Hill R. On discontinuous plastic states, with special reference to localized necking in thin sheets // J. Mechanics Physics Solids. 1952. Vol. 1. P. 19–30.
8. Hora P., Tong L., Reissner J. A prediction method for ductile sheet metal failure in FE-simulation // Proc. of NUMISHEET’96 Conference. MI. USA. 1996. P. 252–256.
9. Malygin G.A. Influence of the grain size on the resistance of micro and nanocrystalline metals against the neck like localization of plastic deformation // Physics of the Solid State. 2011. Vol. 53. No. 2. 363–368.
10. Nirmal K. Constant-load tertiary creep in nickel-base single crystal superalloys // Materials Science and Engineering. 2006. Vol. 432. P. 129–141.
11. Drucker D. A definition of stable inelastic material // Trans. ASME. Ser. E. J. Appl. Mech. 1959. Vol. 6. No. 1. P. 101. (рус. перев.: Механика. Сб. перев., 1960. № 2. C. 55).
12. Malinin N.N., Romanov K.I. Biaxial Tension Stability at Creep Conditions // Bulletin of the USSR Academy of Science. Solid Mechanics. 1981. No 1. P. 133–136.
13. Tsvelodub I.Yu. Stability Postulate and its Application in Creep Theory of Metal Materials. Novosibirsk: Institute of Hudrodynamics of Siberian Branch of the Russian Academy of Sciences, 1991. – 100 p.
14. Digitize scanned graphs and get original (x, y) data. URL: http://getdata-graph-digitizer.com (дата обращения: 15.06.2018).
15. Experimental research of residual kinetics in strengthen hollow cylinder Д16Т simples at creep / V.P. Radchenko, V.А. Kirpichev, V.V. Lunin, А.P. Filatov, А.P. Morozov // Bulletin of Samara State Technical University. Series of Physics and Mathematic Sciences. 2016. T. 20. № 2. С. 290–305.
16. Guguloth K., Roy N. Creep deformation behavior of 9Cr1MoVNb (ASME Grade 91) steel // Materials Science & Engineering. 2017. Vol. 680. P. 388–404.
17. Yang X., Ling X. Application of a composite model in the analysis of creep deformation at low and intermediate temperatures. Preprints 2017, 2017050188 (doi:10.20944/preprints201705.0188.v1). P. 1–9.
Aleksander N. Polilov1, Doctor of Technical Sciences, Professor, Head of the Laboratory of the Composite Structures Safety and Durability, е-mail: polilov@imash.ru
Nikolai A. Tatus1, PhD in Technical Sciences, Senior Researcher of the Laboratory of the Composite Structures Safety and Durability, е-mail: nikalet@mail.ru
1Blagonravov Institute of Mechanical Engineering of the RAS
The main non-traditional effects of polymeric composites application are discussed, and these effects are connected not only with mechanical & physical properties, but also with technological feature and with possibility of using of animate Nature optimum design principles. The analysis of effectiveness of composite branched, bio-inspired structure members are presented, and these members may be used as springs which can store elastic energy.
Keywords: composite material, effects of composite application, branched and shaped equistrong structure, Leonardo’s rule.
References
1. Malakhov А.V., Polilov А.N. Design of fibre paths enveloping a hole and compering them with the wood structure near a knot // Issues of Mechanical Engineering and Machine Durability. 2013. No 4. P. 57–62.
2. Polilov А.N., Plitov I.S., Tatus N.А. Computer modeling of rational structure of curve reinforcing the composite profile parts // Issues of Mechanical Engineering and Automation. 2013. No 4. P. 73–79.
3. Polilov А.N., Tatus N.А. Biomechanics of fibre composites strength. М.: Fizmatlit, 2018. – 328 p.
4. Polilov А.N., Tatus N.А. Design of branching or profile composite parts similarly to the wood crown structure // Issues of Mechanical Engineering and Machine Durability. 2017. No 6. P. 76–84.
5. Harte A.-M., Fleck A. Deformation and failure mechanisms of braided composite tubes in compression and torsion // Acta Mater., 2000. Vol. 48. P. 1259–1271.
6. Malakhov A.V., Polilov A.N. Design of composite structures reinforced curvilinear fibres // Composites: Part A. 2016. Vol. 87. P. 23–28.
7. Using tailored fibre placement technology for stress adapted design of composite structures / A. Spickenheuer, M. Schulz, K. Gliesche, G. Heinrich // Plast. Rubber Compos. – Macromol. Eng., 2008. Vol. 37. No. 5. Р. 227–232.
8. Polilov А.N. Sketchs of Composite Mechanics. М.: Fizmatlit, 2015. – 320 p.
9. Mattheck C. Design in Nature: Learning from Trees. Springer; 1998.
10. Gubenko L.А., Хандов М.Г. Tensile strength evaluation of wooden parts with knots // Bulletin of Higher Schools. Forest Journal. 2015. No 1(343). P. 103–107.
11. Polilov А.N. Experimental Mechanics of Composites (2nd edition): Textbook for Technical Universities. М.: Publishing House of Bauman State Technical University, 2015. – 375 p.
12. Huang J., Haftka R.T. Optimization of fiber orientation near a hole for increased load-carrying capacity of composite laminates // Struct. Multidisc. Optim., 2005. Vol. 30. P. 335–341.
13. Сho H.R., Rowlands R.E. Optimizing fiber direction in perforated orthotropic media to reduce stress concentration // Journal of Composite Materials, 2009. Vol. 43. No. 10. P. 1177–1198.
14. Plitov I.S., Polilov А.N. Rational size of a bamboo unit and a composite tube under compression, bending and torsion // Issues of Mechanical Engineering and Machine Durability. 2015. No 3. P. 58–69.
15. Inoue A., Kuraoka K., Kitahara F. Mathematical expression for the relationship between internode number and internode length for bamboo, Phyllostachys Pubescens // Journal of Forestry Research, 2012. Vol. 23. No. 3. P. 435–439.
16. Eloy C. Leonardo’s rule, self-similarity and wind-induced stresses in trees // arXiv: 1105.2591v2 [physics. Bio-ph]. 15 Nov. 2011.
17. Minamino R., Tateno M. Tree branching: Leonardo da Vinci’s rule versus biomechanical models// Minamino R, Tateno M (2014) Tree Branching: Leonardo da Vinci’s Rule versus Biomechanical Models. PLOS ONE 9(4): e93535. https://doi.org/10.1371/journal.pone.0093535.
18. Schulgasser K., Witztum A. On the strength of herbaceous vascular plant stems // Annals of Botany, 1997. Vol. 80. P. 35–44.
19. Shishkovsky I.V. Principles of Additive Technologies of High Resolution. San-Petersburg: Piter Publishing House, 2015. 348 p.
20. Zlenko М.А., Nagaytsev М.V., Dovbysh V.М. Additive Technologies in Mechanical Engineering: Guide for Engineers. М.: Scientific Centre «NAMI», 2015. 220 p.
Victor V. Ovchinnikov1, Ph.D. (hab) in Technical Sciences, Professor of Material Science Department, Academician of International Academy of Informatization, e-mail: vikov1956@mail.ru
Marina A. Gureeva 2, PhD in Technical Sciences, Associate Professor, Leading Expert of the Al Deformable Alloys Department, е-mail: vag1706@mail.ru
Aleksander M. Drits 2, PhD in Technical Sciences, Director for Business Development, е-mail: Alexander.Drits@arconik.com
1Moscow Polytechnical University
2«Arkonik-SMZ» Co.
This article is dedicated to the main directions of technology development for making wire for fusion welding of aluminum alloys. There are presented the main brand subsidiary wires used for welding of traditional wrought aluminium alloys of Al-Mn, Al-Mg, Al-Cu-Mn alloying systems. The outcomes of the work cycle, allowing to identify the main regularities of influence of additives on the structure and properties of scandium auxiliary system wires Al-Mg-Sc. The influence of scandium, contained in the filler wire on weldability of aluminum alloys. The modern technology of surface preparation wire by scalping, which combined with the mopping up of the surface of the aluminum parts for laser radiation, creates a basis for the elaboration of details and preparation technology wire bypassing the operation of chemical etching.
Keywords: aluminum alloys, filler wire chemical composition, roundness, surface defects, system alloys Al-Mg-Sc, scalping wire surface.
References
1. Drits А.М., Ovchinnikov V.V. Welding of Al Alloys (monography). М.: «Ore and Metals» Publishing House, 2017. – 440 p.
2. Grushko О.Е., Ovsyannikov V.V., Ovchinnikov V.V. Aluminum-lithium alloys: metallurgy, welding, metal science. М.: Nauka, 2014. – 298 p.
3. Drits А.М., Ovchinnikov V.V. Weldability and performance of welded joints of Al-Cu-Li system alloys // Metal Science and Metal Thermal Treatment. 2011. No 9. P. 45–49.
4. Drits А.М., Ovchinnikov V.V. Comparative research of welded joints performance of aluminum-lithium alloys made in Russian and in the USA // Color Metals. 2003. No 12. P. 71–77.
5. Riazantsev V.I., Ovchinnikov V.V. Cyclic strength of Aluminum alloys welded joints // Blanc Production in Mechanical Engineering. 2008. No 12. P. 10–14.
6. Lukin V.I., Skupov А.А., Iyoda Е.N. Studying the aluminum-lithium alloy weldability // Welding Production. 2017. No 5. P. 18–23.
7. Ovchinnikov V.V. Porosity at aluminum alloys welding // Blanc Production in Mechanical Engineering. 2008. No 1. P. 12–16.
8. Ischenko А.Ya. Aluminum alloys welding (research spheres carried out at Paton Welding Institute) // Automation Welding. 2007. No 11. P. 10–13.
9. Toshihiko Fukuda. Weldability of aluminum alloys 7000 series // Journal of Light Metal Welding @Construction. Japan. 2010. Vol. 48. No 1. P. 2–14.
10. Seiji Sasabe. Effect of manganese on the formation of phase separation of microcracks in HAZ of joints of aluminium alloy 6082 // Journal of Japan Institute of Light Metals. 2010. Vol. 60. No 5. P. 213–219.
11. Grushko О.Е., Gureeva М.А., Ovchinnikova V.V. Weldability and mechanical performance of cold-rolled sheets of Al-Mn system alloy// Blank Production in Mechanical Engineering. 2007. No 3. P. 21–23.
12. Riazantsev V.I., Grinin V.V., Ovchinnikov V.V. Issue of aluminum alloys weldability evaluation // Welding Production. 1989. No 9. P. 7–9.
13. Yakushin B.F., Bakulo А.V., Shiganov I.N. Improvement of weldability of heat-strengthened aluminum alloys // Color Metals. 2016. No 5. P. 79–84.
14. Basic properties of the 1151 and 1201 alloys weldability / N.G. Tretiak, R.V. Iliushenko, М.R. Yavorskaya, V.I. Zaytsev // Automation Welding. 1991. No 9. P. 31–33.
15. Riazantsev V.I., Filatov Yu.А., Ignatiev Yu.Е. Choosing a filler wire for the arc welding of the Al–Mg and Al–Cu system alloys // Aircraft Industry. 2003. No 2. P. 43–45.
16. Fedorchuk V.Е. Features of forming the microstructure and chemical heterogeneity in welded joints of B26 alloys at scandium doping // Welding Production. 2014. No 8. P. 3–7.
17. Techniques for preparing welded items at argon arc welding of thin sheet constructions / А.О. Koshelev, Е.V. Nikitina, V.А. Frolov, А.N. Vlasenko // Welding Production. 2016. No 8. P. 25–28.
18. Ignatiev Yu.Е., Ovchinnikov V.V., Riazantsev V.I. Discharge and pulsing arc welding of aluminium alloys // Mechanical Industry and Engineering Education. 2007. No 3. P. 12–28.
19. Aviation construction assembly-welding on AC machine complexes / V.I. Riazantsev, V.N. Matsnev, V.V. Grinin, V.V. Ovchinnikov // Blank Production in Mechanical Engineering. 2006. No 4. P. 11–16.
20. Rudzey G.F. Influence of weld defects and of number of Влиянидефектов сварки и числа ремонтных проходов на сопротивление усталости сварных соединений из алюминиевых сплавов // Сварочное производство. 2013. № 11. С. 32–35.
Ilia P. Lian1, Research Assistant of Vibromechanics Laboratory, е-mail: lyanilyaimash@yandex.ru
Grigory Ya. Panovko, Honoured Scientist of the Russian Federation, Ph.D. (hab.) of Technical Sciences, Professor, head of Vibromechanics Laboratory1, Professor of Applied Mechanics Dpt.2, е-mail: ganovko@yandex.ru
1Blagonravov Institute of Mechanical Engineering of the RAS
2Bauman Moscow State Technical University
The article represents the results of modeling a granulated medium behavior on a vibrating surface. The system of equations of continuous medium mechanics is provided, as well as a rheological equation presenting a granulated medium as a non-Newtonian (dilatant) fluid. The numerical solution of the given system of equations is based on the modified method of large particles. The presented algorithm can be used for modeling the processes with granular media having different properties under periodical loads. The parametric analysis of vibration influence on the granular media behavior was conducted.
Keywords: granular medium, vibration, rough surface, modeling, method of large particles, vibrotransportation.
References
1. Spivakovsky А.О., Goncharevich I.F. Vibrating Conveyer, Feeders and Pilot Devices. М.: Mashinostroenie, 1972. – 327 p.
2. Azbel G.G., Blechman I.I., Bykhovsky I.I. Vibrations in Technics: guide in 6 vol.: edited by E.E. Levendela. V.4. М.: Mashinostroenie, 1981. –– 509 p.
3. Gutman I. Industrial uses of mechanical vibrations. London: Business Books Ltd, 1968. – 331 p.
4. Blekhman I.I., Drzanelidze G.Yu. Vibratory Displacement. М.: Nauka, 1964. – 412 p.
5. Blekhman I.I. Vibrating Mechanics. М.: Fizmatlit, 1994. – 374 p.
6. Cherniak V.G., Suetin P.Е. Mechanics of Continua. М.: Fizmatlit, 2006. – 352 p.
7. Jaeger H.M., Nagel S.R., Behringer R.P. Granular solids, liquids, and gases. // Rev. of Mod. Phys. 1996. Vol. 68. No. 4. PP. 1259–1273.
8. Ogawa S. Multitemperature theory of granular materials // Proc. of the US – Japan Seminar on Contin-Mechanical and Statistical Approaches Mechanical Granular Material. Tokyo: Gukujustu Bunken Fukyakai, 1978. P. 208.
9. Vibration-induced phenomena in bulk granular materials / V.A. Golovanevskyi, V.A. Arsentyev, I.I. Blekhman, V.B. Vasilkov, Y.I. Azbel, K.S. Yakimova // Inter. Journ. of Mineral Processing. 2011. Vol. 100. PP. 79-85.
10 Some ideas on modeling stress propagation in granular media / E.F. Grecova, A. Castellanos, S.N. Gavrilov et al. // Book of Abstracts of the XXXV Summer School-Conference «Advanced Problems in Mechanics». June 20–28, 2008. St. Petersburg (Repino), Russia. PP. 423–426.
11. Loktionova О.G. Dynamics of Vibrating Technological Processes and Machines for Heterogeneous Granular Medium Treatment: paper of Ph.D. habil. In Technical Sciences. Kursk, 2008. – 215 p.
12. Gortinsky V.V. Fibered movement of grain refinement products at flat screen // Proc. of VYREZ. 1963. No 42. P. 14–17.
13. Maslova О.G. Studying Dynamics and Developing the Method for Vibrating Measuring Hopper Analysis by the Particle-in-cell Method: PhD. Paper on Technical Sciences. Kursk, 1992. – 165 p.
14. Yatsun S.F. Mathematic modeling the vibrating machines for loose particulate materials // Bulletin of Kursk State Technical University. 1997. No 1. P. 11–20.
15. Zhuravleva E.V. Modeling the Dynamics of Vibrating Transportation Process for loose particulate material: PhD. Paper on Technical Sciences. Kursk, 2000. – 129 p.
16. Yatsun S.F., Zhuravleva E.V. Computing experiment on loose particulate material dynamics // Vibrating Machines and Technologies. Proc. of IV Intern. Scientific-technical Confer. Omsk. 1999. P. 143–147.
17. Kleyn G.K. Structural Mechanics of Granulated Solids. М.: Stroyizdat, 1977. – 256 p.
18. Belotserkovsky О.М. Numerical Modeling in Mechanics of Continua. М.: Fiz-mat. Literature, 1994. – 448 p.
19. Belotserkovsky О.М., Davydov Yu.М. Particle-in-cell Method in Gas Dynamics: Computing experiment. М.: Nauka, 1982. – 392 p.
НОВОСТИ
МЕДИА
КОНТАКТНАЯ ИНФОРМАЦИЯ
УНИВЕРСИТЕТ
Ученый совет
Кампус
РЕСУРСЫ
Центр подготовки водителей (автошкола)
Центр развития профессионального образования
Центр развития профессионального образования
ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ