Университет | Образование | Наука | Внеучебная жизнь |
Меню Close Menu |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
Rus / Eng
|
Университет | Образование | Наука | Внеучебная жизнь |
Университет |
Образование |
Наука |
Внеучебная жизнь |
English version
Archive of Issues |
Nikolai S. Azikov1, Ph.D. (hab.) of Technical Sciences, Professor, Deputy Director for Research, е-mail: nik_azikov@mail.ru
Grigory Ya. Panovko, Honoured Scientist of the Russian Federation, Ph.D. (hab.) of Technical Sciences, Professor, head of Vibromechanics Laboratory1, Professor of Applied Mechanics Dpt.2, е-mail: ganovko@yandex.ru
Gleb S. Filippov1, Ph.D. of Technical Sciences, Deputy Director for Research, е-mail: filippov.gleb@gmail.com
1Blagonravov Institute of Mechanical Engineering of the RAS
2Bauman Moscow State Technical University
The article contains basic information about the history of the creation and development of the Mechanical Engineering Research Institute of Russian Academy of Science. There is shown the role of the Institute in solving the foundamental problems of mechanical engineering and closed branches of industry. The role of the Institute scientific schools founders in forming the present state of knowledge for a science of machines is represented in historical perspective.
Keywords: institute, science, machine science, history, structure, tasks, development.
References
1. Evgenii Alekseevich Chudakov / I.А. Oding, G.V. Zimelev, М.М. Khruschov, B.V. Gold // Machine Science. Proc. Dedicated to 60 year Anniversary of academician E.A. Chudakov. М., USSR Academy of Sciences Publishing House, 1950. – 607 p.
2. Outstanding Scientists: Chudakov Evgenii Alekseevich // Blagonravov Institute of Mechanical Engineering of the RAS. URL: http://imash.ru/about/leading-scientists/chudakov/ (date of access: 05.09.2018).
3. Frolov K.V., Parkhomenko А.А., Uskov М.K. Science about Machines – a basis of Mechanical Engineering: Stages of Research Development. М.: Nauka, 1987. – 355 p.
4. Frolov K.V., Parkhomenko А.А., Uskov М.K. Anatoly Arkadievich Blagonravov. М.: Nauka, 1982.
5. Achievements and Tasks for Mechanical Engineering. For 70 year Anniversary of academician Konstantin Vasilievich Frolov: ed. by V.Е. Fortov, N.А. Makhutov, А.P. Bessonov, V.P. Petrov. М.: IMASH RAS, 2006. – 415 p.
6. Ilgamov М.А. Resonance. М.: Maska, 2013. – 209 p.
7. Basic Information about IMASH RAS // Blagonravov Institute of Mechanical Engineering of the RAS. URL: http://imash.ru/about/ (date of access: 05.09.2018).
8. Ganiev R.F., Glazunov V.А. Manipulative Mechanisms of Parallel Structure and Their Application in Contemporary Technique // Reports of the Academy of Sciences. 2014. V. 459. No 4. P. 428–431.
9. Artobolevskii I.I. Theory of Mechanisms and Machines: 4th ed. М.: Nauka, 1988. – 640 p.
10. Bruevich N.G., Sergeev V.I. Principles of Non-linear Theory of Device Precision and Reliability. М.: Nauka, 1976. – 136 p.
11. Ganiev R.F., Ukrainskii L.Е. Non-linear Wave Mechanics and Technology, Wave and Oscillating Phenomena in Base of High Technologies. М.: “Regular and Chaotic Dynamics” Research Centre, 2011. - 780 p.
12. Ganiev R.F. Non-linear Resonances and Catastrophes. М.: “Regular and Chaotic Dynamics” Research Centre, 2013. – 592 p.
13. Drozdov Yu.N., Pavlov V.G., Puchkov V.N. Friction and Wear in Extremal Conditions. Guidebook. М.: Mashinostroenie, 1986. – 224 p.
14. Kragelskii I.V. Friction and Wear in Machines. М.: Mashgiz, 1962.
15. Kogaev V.P. Strength Analysis at Time Variant Tensions. М.: Mashinostroenie, 1977. – 232 p.
16. Strength, Resource, Durability, Safety: ed. by N.А. Makhutov. М.: Book House «LIBROKOM», 2008. – 576 p.
17. Prigorovsky N.I. Methods and Means for Determination of Deformations and Tensions Fields: Guidebook. М.: Mashinostroenie, 1983. – 248 p.
18. Rabotnov Yu.N. Mechanics of Deformable Solid. М.: Nauka, 1988. – 712 p.
19. Rabotnov Yu.N. Creep of Structure Elements. М.: Nauka, 1966. – 752 p.
20. Rovinsky B.М., Kozhina N.K. X-ray study of Mg-Cd Alloys. М.: ONTI, Glav. red. chim. literatury, 1938. – 36 p.
21. Serensen S.V., Tetelbaum I.М., Prigorovsky N.I. Dynamic Strength in Mechanical Engineering. М.: NKTM USSR. Gos. Nauch-techn. izd-vo machinostroit. lit., 1945. – 328 p.
22. Serensen S.V., Kogaev V.P., Sheyderovich R.М. Load Bearing Capacity and Strength Analysis of Machine Parts. М.: Machinostroenie, 1975. – 488 p.
23. Frolov K.V. Applied Theory of Vibroprotective Systems. М.: Machinostroenie, 1980. – 275 p.
24. Frolov K.V. Machine Development Methods and Modern Problems of Mechanical Engineering. М.: Mashinostroenie, 1984. – 223 p.
25. Khruschov М.М. Laboratorial Wear Test Methods for Gear-Wheel Materials. М.: Mashinostroenie, 1966. – 151 p.
Aleksandr M. Guskov, Doctor of Technical Sciences, Professor of Applied Mathematics Dpt.1, Principal Researcher2, е-mail: gouskov_am@mail.ru
Mikhail A. Guskov3, Ph.D. in Technical Sciences, Associate Professor (PIMM Laboratory UMR 8006, ENSAM, CNRS, CNAM, Paris, France), е-mail: mikhail.guskov@ensam.eu
Dinh Due Tung, Postgraduate student1, е-mail: tungdinhx48@gmail.com
Grigory Ya. Panovko, Honoured Scientist of the Russian Federation, Ph.D. (hab.) of Technical Sciences, Professor, head of Vibromechanics Laboratory2, Professor of Applied Mechanics Dpt.1, е-mail: ganovko@yandex.ru
1Bauman Moscow State Technical University
2Blagonravov Institute of Mechanical Engineering of the RAS
3Paris High School of Engineering (Ecole des Ingénieurs de la Ville de Paris)
The paper presents the nonlinear dynamics modeling results of the cutting process with multi-tool turning. The mathematical modeling is based on the equations of formation of new surfaces, equations of motion and fractional - rational cutting law. The influence of the parameters of the technological system on the thickness of the removable layer and the shape of the chips, the appearance and nature of self-oscillation cutters during cutting.
Keywords: multi-cutter turning, dynamics, modeling, bifurcation analysis.
References
1. An experimental study of cutting forces and temperature in multi-tool turning of grey cast iron / R. Kalidasan, M. Yatin, D.K. Sarma, S. Senthilvelan, U.S. Dixit // Int. J. of Machining and Machinability of Materials. 2016. Vol. 18. No. 5/6. Р. 540–551.
2. Reith M.J., Bachrathy D., Stepan G. Improving the stability of multi-cutter turning with detuned dynamics // Machining Science and Technology. 2016. Vol. 20 (3). P. 440–459.
3. Azvar M., Budak E. Multi-dimensional modelling of chatter stability in parallel turning operation // Proceedings of the 17th International Conference on Machine Design and Production. July 12–15, 2016, Bursa, Turkey.
4. Cylindrical Workpiece Turning Using Multiple-Cutting Tool / A. Gouskov, S.A. Voronov, H. Paris, S.A. Batzer // Proceedings of the Design Technical Conferences and Computers and Information Engineering Conference. September 9–12, 2001. Pittsburgh, Pennsylvania.
5. Kozochkin М.P. Dynamics of Cutting. Theory, Experiment, Analysis. Lambert Academic Publishing, 2013. – 297 p.
6. Kudinov V.А. Dynamics of Machine-tools. М.: Mashinostroenie, 1967. – 357 p.
7. On the global dynamics of chatter in the orthogonal cutting model / Z. Dombovari, D.A.W. Barton, R.E. Wilson, G. Stepan // Int. J. of Non-linear Mechanics. 2011. No 46. Pp. 330–338.
8. Influence of the ploughing effect on the dynamic behavior of the self-vibratory drilling head / D. Brissaud, A. Gouskov, N. Guibert, J. Rech // CIRP Annals – Manufacturing Technology. 2008, pp. 385–388.
9. Lamikiz A. Calculation of the specific cutting coefficients and geometrical aspects in sculptured surface machining // Machining Science and Technology. 2005. Vol. 9 (3). P. 411–436.
10. Analysis of indirect measurement of cutting forces turning metal cyli drical shells / K. Kondratenko, A. Gouskov, M. Guskov, Ph. Lorong, G. Panovko // Vibration Engineering and Technology of Machinery. 2014. P. 929–937.
11. Influence of the clearance face on the condition of chatter self-excitation during turning / A. Gouskov, M. Gouskov, Ph. Lorong, G. Panovko // Int. J. of Machining and Machinability of Materials. 2017. Vol. 19 (1). P. 17–39.
12. Analytical approach of turning thin-walled tubular parts. Stability analysis of regenerative chatter / A. Gerasimenko, M. Guskov, A. Gouskov, P. Lorong, G. Panovko // Vibroengineering Procedia. 2016. Vol. 8. P. 179–184.
13. Nonlinear dynamics of a machining system with two interdependent delays / A.M. Guskov, S.A. Voronov, H. Paris, S.A. Batzer // Communications in Nonlinear Science and Numerical Simulation. 2002. Vol. 7 (3). P. 207–221.
14. Benardos P.G., Mosialos S., Vosniakos G.C. Prediction of workpiece elastic deflections under cutting forces in turning // Robotics and Computer-Integrated Manufacturing. 2002. Vol. 22. P. 505–514.
15. Wang, X., Feng C.X. Development of Empirical Models for Surface Roughness Prediction in Finish Turning // Int. J. of Advanced Manufacturing Technology. 2002. Vol. 20 (5). P. 348–56.
16. Astashev V.K., Korendiasev G.K. Thermo-mechanic Model of Self-oscillations at Cutting // Issues of Mechanical Engineering and Machines Reliability. 2012. No 3. P. 3–9.
Igor A. Razumovsky, Doctor of Technical Sciences (hab.), Head of the Fracture and Vitality Mechanics Laboratory1, Professor of the Applied Mechanics Dpt.2, е-mail: murza45@gmail.com
1Blagonravov Institute of Mechanical Engineering of the RAS
2Bauman Moscow State Technical University
The article contains an analysis of current problems and prospects for the development and effective application of experimental methods for analyzing the stress-strain state, as well as the damage and destruction accumulation of machines and structures. A special place is given to the development of complex methods, including the registration of significant volumes of experimental information directly in digital form, in combination with mathematical methods of its processing and computer technologies.
Keywords: experimental mechanics, electronic digital speckle interferometry, digital image correlation method, brittle tensosensitive coatings, acoustic emission, finite element method, inverse problems of mechanics.
References
1. Tensions and Deformations in Machine Parts and Units / N.I. Prigorovsky et al. М.: Mashgiz. 1961. – 564 p.
2. Rayevskii N.P. The Measurement of Mechanical Parameters in Machines. Institute Machine Construction, Russian Academy of Sciences. Pergamon press Ltd. London-New York-Paris-Frankfurt. 1965. – 206 c.
3. Priorovsky N.I., Panskikh V.K. Method of Brittle Strain-Sensing Coatings. М.: Nauka. 1978. – 184 p.
4. Prigorovsky N.I. Methods and Means for Deformations and Tensions Fields Determination: guidebook. М.: Mashinostroenie. 1983. – 248 p.
5. Shneyderovich R.М., Levin О.А. Measuring Plastic Deformation Fields by the Moire Method. М.: Mashinostroenie. 1972. – 152 p.
6. Daychik М.L., Prigorovsky N.I. , Khurshudov G.Kh. Methods and Means of In-Situ Tensometry. М.: Mashinostroenie. 1989. – 240 p.
7. Experimental Research of Deformations and Tensions in Water –Cooled Power Reactor / N.А. Makhutov, K.V. Frolov et al. М.: Nauka. 1990. – 246 p.
8. Model Research and In-situ Tensometry of Reactors / N.А. Makhutov, K.V. Frolov et al. М.: Nauka. 2001. – 293 p.
9. Strain and stress analysis by holographic and speckle interferometry / V.P. Shchepinov, V.S. Pisarev, S.A. Novikov, V.V. Balalov, I.N. Odintsev, M.M. Bondarenko et al. Chichester: John Wiley & Sons. 1996. – 496 p.
10. Gloud G.L. Optical methods of engineering analysis. Cambridge University Press. 1998. – 503 с.
11. Schnars U., Jüptner W. Digital Holography. Springer. 2005. – 164 p.
12. Rasumovsky I.A. Interference-optical Methods of Solid Mechanics/Series: Foundations of Engineering Mechanics. Springer. 2011. – 270 p.
13. Matvienko Yu.G. Models and Criteria of Brittle Failure. М.: Physmatlit. 2006. – 328 p.
14. Cherniatin А.S., Razumovsky I.А., Matvienko Yu.G. Evaluation of Inelastic Deformation Zone Sizes at a Crack Tip on the Base of Displacement Fields Analysis // Plant Laboratory. Materials Diagnosis. 2016. Vol. 82. No 12. P. 45–51.
15. Matvienko Yu.G. Non-singular Т-tensions in Problems of Two-parameter Mechanics of Failure // Plant Laboratory. Materials Diagnosis. 2012. No 2. P. 51–58.
16. Cherniatin А.S., Matvienko Yu.G., Lopez-Crespo P. Parameter Determination of Two-parameter Mechanics of Failure along a Crack Front according to Data of a Method Digital Images Correlation // Plant Laboratory. Materials Diagnosis. 2016. Vol. 82. No 11. P. 46–53.
17. Litvinov I.А., Matvienko Yu.G., Razumovsky I.А. Precision for determination of non-singular components of a strength field in a Top Crack with the Extrapolation Method // Mechanical Engineering and Engineering Education. 2014. No 4. P. 43–51.
18. Razumovsky I.А., Cherniatin А.S. Methodology and Programme for studying the stress-deformed state with Interferential-optic and Numerical Methods // Mechanical Engineering and Engineering Education. 2009. No 4. P. 42–51.
19. Chernyatin A., Razumovsky I. Experimental and computational method for determining parameters of stress-strain state from the data obtainable by interference optical techniques // Proc. ICEM-14. – Poitier, France / – 2010: EPJ Web of Conferences 6, 45003.
20. Chernyatin A.S., Razumovskii I.A. Methodology and software package for assessment of stress-strain state parameters of full-scale structures and its application to a study of loading level, defect rate and residual stress level in elements of NPP equipment // Strength of Materials. 2013. Vol. 45. № 4. P. 506–511.
21. Razumovsky I.А., Cherniatin А.S. Determination of structural parts burden and defection on the base of minimizing a divergence among experimental and designed data // Plant Laboratory. Materials Diagnosis. 2012. No 1. Part I. P. 71–78.
22. Cherniatin А.S., Razumovsky I.А. Complex analysis of structural elements with surface cracks // Mechanical Engineering and Engineering Education. 2011. No 3. P. 66–73.
23. Chernyatin A.S., Matvienko Y.G., Razumovsky I.A. Сombining experimental and numerical analysis to estimate stress fields along the surface crack front // Frattura ed Integrita Strutturale. 2013. Vol. 7. No 25. P. 15–19.
24. Chernyatin A.S., Razumovsky I.A. Sequentially recessed disk section – an indicator of residual stresses in space bodies // Mechanical Engineering and Machine Reliability Issues. 2015. No 5. P. 93–102.
25. Razumovsky I.А., Cherniatin А.S. Experimental-design method for studying residual stress in double layer structural elements by drilling a hole // Mechanical Engineering and Machine Reliability Issues. 2011. № 4. С. 101–109.
26. Chernyatin A.S., Razumovsky I.A. Indentation method as a mean for evaluation of loading and degradation of material mechanic data // Mechanical Engineering and Machine Reliability Issues. 2015. No 4. P. 40–48.
27. Studying the material deformation process by optical-correlation methods / А.N. Lucenko, I.N. Odincev, А.V. Grinevich, P.B. Severov, Т.P. Plugatar’ // Aviation Materials and Technologies. 2014. No 4. P. 70–86.
28. Autonomous speckle -interferometer for determination of residual stresses and its approbation in natural experiments / I.N. Odincev, А.А. Apalkov, Т.P. Plugatar’, S.М. Usov // Proc. of “Durability and structural material science” International Conference (Zhyvkom-2016), М., 2016. P. 136–140.
29. Studying the residual stresses in welded pipes on the method of hole drilling and optical interferential measurements / V.V. Balalov, V.G. Moshenskij, I.N. Odincev, V.S. Pisarev // Plant Laboratory. Materials Diagnosis. 2011. V. 77. No 5. P. 43–48.
30. Apalkov A.A., Odintsev I.N., Usov S.M. Speckle pattern interferometry for measurement of residual stress: basic approach, mathematical support, special arrangement, practical application // Machines, technologies, materials. 2015. № 5. P. 18–20.
31. Chernyatin A.S., Razumovsky I.A., Matvienko Yu.G. Kinetics of an edge crack in the residual stress field // Mechanical Engineering and Machine Reliability Issues. 2016. No 6. P. 25–34.
32. Hamam R., Pommier S., Bumbieler F. Mode I fatigue crack growth under biaxial loading // International Journal of Fatigue. 2005. V. 27. P. 1342–1346.
33. Using the optical fiber as deformation data units in polymeric composite materials / Е.N. Kablov, D.V. Sivakov, I.N. Gulaev, K.V. Sorokin, М.Yu. Fedotov, Е.М. Dianov, S.А. Vasiliev, О.I. Medvedkov // All materials. Encyclopedic Guideline. 2010. No 3. P. 10–15.
34. Kulchin Yu.N. Distributed Optical Fiber Measurement Systems. М.: Fizmatlit, 2001. – 272 p.
35. Di Sante R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications // Sensors. 2015. 15. P. 18666–18713.
36. Experimental-numerical determination of foliating defection sizes in laminated composite materials / А.S. Urnev, А.S. Cherniatin, Yu.G. Matvienko, I.А. Razumovsky // Plant Laboratory. Materials Diagnosis. 2018. No 10 (to be printed).
37. Modeling defects in laminated composite constructions / А.S. Urnev, А.S. Cherniatin, Yu.G. Matvienko, I.А. Razumovsky // Mechanical Engineering and Engineering Education. 2017. No. 3. P. 26–33.
38. Patent 2345324 the Russian Federation, MPK8 G01B 17/04, G01N 29/14 / Method of Studying Deformations and Stresses. Permiakov V.N., Makhutov N.А., Khayrullina L.B.; applicant and patent holder – Tiumen GNGU; appl. 2007116182/28, dated 27.04.2007; published 27.01.2009, biul. No 3.– 6 p.
39. Makhutov N.А., Permiakov V.N., Khayrullina L.B. Analysis of gas-technical plant equipment stress-deformation during operating // Issues of Safety and Emergency. 2009. No 2. P. 69–74.
40. Patent 2313551, MPK 11 G 01B 11/16/ Fragile Coating on the Base of Artificial Resins. Permiakov V.N., Parshukov N.N., Makhutov N.А., Khayrullina L.B.; applicant and patent holder – Tiumen GNGU; dated 27.09.2006; published 27.12.2007. Biul. No 36.
41. Ivanov V.I., Vlasov I.E. Method of Acoustic Emission. Nondestructive Testing: guidebook; in 7 vol.: edited by V.V. Kluev. Vol. 7. Book. 1. М.: Mashinostroenie. 2005. 340 p.
42. Using acoustic emission for testing the crack forming in fragile oxide strain indicators / N.А. Makhutov, V.V. Shemiakin, B.N. Ushakov, Т.B. Petersen, I.А. Vasiliev // Plant Laboratory. Materials Diagnosis. 2011. No. 6. P. 41–44.
43. Acoustic-emission characteristics of oxide strain indicators and signal identification at crack forming in fragile coating layer / Yu.G. Matvienko, I.Е. Vasiliev, V.I. Ivanov, S.V. Elizarov // Nondestructive Test. 2015. No. 1. P. 48–60.
44. Testing the method of cluster analysis of acoustic-emission pulses series at forming a bulk cone of quenchet cullet / N.А. Makhutov, I.Е. Vasiliev, V.I. Ivanov, S.V. Elizarov, D.V. Chernov // Plant Laboratory. Materials Diagnosis. 2016. No. 5. P. 44–54.
45. Complex studying defects in composite materials by fragile strain coatings and acoustic emission / Yu.G. Matvienko, А.V. Fomin, V.I. Ivanov, P.B. Severov, I.Е. Vasiliev // Plant Laboratory. Materials Diagnosis. 2014. No. 1. P. 46–50.
46. Early detection of damage and fracture zones with fragile strain indicators and acoustic emission / Yu.G. Matvienko, I.Е. Vasiliev, А.V. Pankov, М.А. Trusevich // Plant Laboratory. Materials Diagnosis. 2016. No. 6. P. 45–56.
Igor A. Burlakov1, Doctor of Technical Sciences (hab.), UGT Senior Officer, е-mail: burlakov@salut.ru
Dmitry E. Gordin2, Post-graduate student of Metal Forming and Additive Technologies Dpt., е-mail: mitya.gordin@yandex.ru
Dmitry M. Zabelian1, Deputy Chief Engineer – Chief Technologist, е-mail: Zabelyan@salut.ru
Study results of thermal drilling billets from VT20 high-temperature titanium alloy are presented in the article. There is shown that the method allows making holes of sufficiently good cylinder form, also the results of finding the rational instrument and drilling regimes are described.
Keywords: VT20 titanium alloy, thermal drilling, QForm VX programme, thermal drilling plant, experiments.
References
1. Hole Forming Features in Refractory Alloy Billets by Thermal Drilling / I.А. Burlakov, D.М. Zabelian, S.V. Morozov et al. // Blacksmith-Stamping Production. Metal Forming. 2016. No. 12. P. 36–40.
2. Feasibility of thermally drilling automotive alloy sheet, castings, and hydroformed shapes / P.J. Blau & et al. // ETDE. 2007.
3. Technology and Tools for Thermo-plastic hole forming / D.А. Demorecky, М.V. Nenashev, I.D. Ibatulin, I.V. Nechaev, S.G. Ganigin, А.Yu. Murzin, V.V. Usachev, М.А. Bakulin. Samara: Samara State Technical University, 2011. P. 429–432.
4. Science Intensive Technologies of Mechanical Engineering Production. Physic-Chemical Methods and Techniques / Yu.А. Morgunov, D.V. Panov, B.P. Saushkin, S.B. Saushkin; ed. by B.P. Saushkin. М.: FORUM, 2013. – 928 p.
5. Hole forming in sheet articles of a gas-turbine engine from refractory alloys by thermal drilling / D.М. zabelian, I.А. Burlakov, А.V. Makedonov // Proc. of “New Methods and Technologies in Gas-Turbine Production” National Scientific-technical Conf. of Young Scientists and Specialists. М.: CIAM, 2015. P. 244–246.
6. Refractory Metals and Alloys Forming / N.I. Korneev et al. М.: Metallurgia, 1975. – 440 p.
Kirill V. Ozhmegov1, Ph.D. in Technical Sciences, Senior Researcher, е-mail: kirillozhmegov@yandex.ru
Aleksander M. Galkin2, Doctor of Technical Science (hab.), Professor, e-mail: astataru@gmail.com
Aleksander S. Zavodchikov1, Ph.D. in Technical Sciences, Senior Researcher, е-mail: ASZavodchikov@bochvar.ru
Aleksander S. Tataru2, Ph.D. in Technical Sciences, Assistant of Metal Forming Dpt., е-mail: astataru@gmail.com
1Highly Technological Non-organic Materials Research Institute named after А.А. Bochvar
2National University of Science and Technology MISIS
This paper presents results of numerical modeling and physical research of thermal effect during cold and warm deformation treatment of zirconium alloy metal products at temperature under interval 20–500°C during strain rate 0,5 and 15 s-1. The experiments were conducted with using compression test on metallurgical process simulator «Gleeble 3800». The results of compression tests were used in a numerical model for calculating the thermal effect of plastic deformation. The temperature fields of the thermal effect were calculated in model. Verification of mathematical modeling with the results of experiments was carried out.
Keywords: thermal effect, cold and warm rolling process, zirconium alloy Zr-Nb, numerical modeling.
References
1. Mochalov N.А., Galkin А.М., Mochalov S.N. Plastometric Metal Studying. М.: Intermet Engineering, 2003. − 318 p.
2. Ozhmegov K.V., Sergacheva M.I., Kabanov A.A. Influence Studying the Strain Rate Conditions of Pilgrer Rolling on the Tube Quality and Rheological Characteristics of Zirconium Alloy // Mechanical Engineering and Engineering Education. 2017. No. 3 (52). P. 16–21.
3. Zaimovsky А.S., Nikulina А.V., Reshetnikov N.G. Zirconium Alloys in Nuclear Power Engineering. М.: Energoizdat, 1994. – 256 p.
4. Irregularity of metal flow at dynamic loading conditions / А.М. Galkin, Kh. Dya, B. Kochurkevich et al. // Proc. of “Progressive technologies for Plastic Deformation” International Conf., MISIS. Moscow, 2009. P. 259–266.
НОВОСТИ
МЕДИА
КОНТАКТНАЯ ИНФОРМАЦИЯ
УНИВЕРСИТЕТ
Ученый совет
Кампус
РЕСУРСЫ
Центр подготовки водителей (автошкола)
Центр развития профессионального образования
Центр развития профессионального образования
ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ